関西学院大 3次方程式の解 - 質問解決D.B.(データベース)

関西学院大 3次方程式の解

問題文全文(内容文):
2022関西学院大学過去問題
a実数
$x^3-(2a+1)x^2-3(a-1)x-a+5 = 0$
①aの値に関わらずx=□は解である
②異なる3つの負の解をもつaの範囲
③$x^3=1$の虚数解の1つをωとする
ω+k(k>0)が解であるならa=□
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022関西学院大学過去問題
a実数
$x^3-(2a+1)x^2-3(a-1)x-a+5 = 0$
①aの値に関わらずx=□は解である
②異なる3つの負の解をもつaの範囲
③$x^3=1$の虚数解の1つをωとする
ω+k(k>0)が解であるならa=□
投稿日:2023.07.01

<関連動画>

三次方程式の実数解 埼玉大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$12x^3-21x^2+2x+4=0$

(1)正の実数を2つ,負の実数解を1つもつことを示せ.
(2)正の実数解を$\alpha,\beta(\alpha \lt \beta)$とするとき,$\vert \alpha-1 \vert,\vert \beta-1 \vert $の大小比較せよ.

1982埼玉大過去問
この動画を見る 

組立除法(数II)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
次の整式$A$を$B$で割った商と余りは?
(1)$A=x^3+3x^2+4x-2,B=x+1$
(2)$A=x^3-4x^2-5,B=x-3$
(3)$A=2x^3-5x^2+5x-3,B=2x-3$
この動画を見る 

ざ・見掛け倒し 複素数の基本

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-x+1=0$のとき,$x^{2020^{2021}}+\dfrac{1}{x^{2021^{2021}}}$の値を求めよ.
この動画を見る 

福田の入試問題解説〜北海道大学2022年文系第1問〜剰余定理と高次不等式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
kを実数の定数とし、
$f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-k+1$
とする。
(1)$f(k-1)$の値を求めよ。
(2)$|k|\lt 2$のとき、不等式$f(x) \geqq 0$を解け。

2022北海道大学文系過去問
この動画を見る 

東工大 二次方程式と四次方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^2+2x+a$
$f(x)=0$が相違なる実根をもち、$f(f(x))=0$が重解$\gamma$をもつ。
$\gamma,a$の値を求めよ。

出典:東京工業大学 過去問
この動画を見る 
PAGE TOP