慶應の入試に国語がない本当の理由【慶應国文学卒あ〜るさん】 - 質問解決D.B.(データベース)

慶應の入試に国語がない本当の理由【慶應国文学卒あ〜るさん】

問題文全文(内容文):
慶應文学部国文学専攻卒のあ~るさんとの対談動画です。

慶應義塾大学の入試問題に、国語がない理由について語り合います。

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
慶應文学部国文学専攻卒のあ~るさんとの対談動画です。

慶應義塾大学の入試問題に、国語がない理由について語り合います。

投稿日:2019.09.16

<関連動画>

【京大数学有名過去問】tan1°は有理数か、を証明してみよう!

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
tan1°は有理数かの証明動画です
この動画を見る 

大学入試問題#726「一橋レベルでこれは落とせん」 一橋大学(2021)積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)$は微分可能かつ導関数が連続な関数とする。
$f(0)=0$であるとき、
$\displaystyle \frac{d}{dx}(\displaystyle \int_{0}^{x} e^{-t}f(x-t)dt)=\displaystyle \int_{0}^{x} e^{-t}f'(x-t)dt$ を示せ

出典:2021年一橋大学後期 入試問題
この動画を見る 

【工夫あり】二次方程式の解を四捨五入!?【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$m,n$を正の整数とする。$x$についての二次方程式$12x^2-mx+n=0$の二つの実数解を小数第2位で四捨五入して0.3および0.7を得た。$m,n$を求めよ。

一橋大過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第2問〜ポーカーの役が揃う場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 
ジョーカーを除いた52枚のトランプでポーカーを行う。トランプには♠♧♦♡の4つのスートのそれぞれに1から13までの数が書かれた13枚のカードがある。(1,11,12,13の代わりに、A,J,Q,Kの記号を用いることが多い)
「10,J,Q,K,A」の組合せはストレートやストレートフラッシュとして認めるが、Aを超えて「J,Q,K,A,2」のように2まで含めるものは認めない。52枚のカードから5枚を抜き出す組合せの数は${}_{52}\textrm{C}_5=2598960$通りあるが、それがストレートフラッシュとなる組合せの数を求めてみよう。ストレートフラッシュの5枚のカードの最小の数は$1,2,\ldots,\boxed{\ \ アイ\ \ }$のどれかであるから、それぞれのスートごとに$\boxed{\ \ アイ\ \ }$通り考えられる。よって、$4\times \boxed{\ \ アイ\ \ }=\boxed{\ \ ウエ\ \ }$通りのストレートフラッシュの組合せがある。また、ストレートについては、数は順番に並んでいるが、スートがそろっていない組合せの数なので$\boxed{\ \ オカキクケ\ \ }$通りある。
次に、フルハウスとなる組合せの数を求めてみよう。同じ数のカードが3枚と2枚のふたつの組があり、3枚の組を選ぶ組合せ$\boxed{\ \ コサ\ \ }\times {}_4\textrm{C}_3$、残り2枚のカードを選ぶ組合せは$\boxed{\ \ シス\ \ }\times {}_4\textrm{C}_2$であるから、フルハウスとなる組合せの数は$\boxed{\ \ コサ\ \ }\times{}_4\textrm{C}_3\times$$\boxed{\ \ シス\ \ }\times$${}_4\textrm{C}_2=\boxed{\ \ セソタチ\ \ }$ 通りである。

2021慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜大阪大学2023年文系第1問〜三角方程式と解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。θについての方程式

$\cos 2θ =a\sin θ +b$

が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ

2023大阪大学文系過去問
この動画を見る 
PAGE TOP