立命館大 整数問題 - 質問解決D.B.(データベース)

立命館大 整数問題

問題文全文(内容文):
$ 55x^2+2xy+y^2=2007$をみたす整数(x,y)をすべて求めよ.

立命館大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 55x^2+2xy+y^2=2007$をみたす整数(x,y)をすべて求めよ.

立命館大過去問
投稿日:2023.01.29

<関連動画>

19愛知県教員採用試験(数学:4番 整数問題(数列系))

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
4⃣$N=\mathbb{ p }^n×5^n$
(1)正の約数の個数が8個
(2)正の約数の総和が90のとき、$\mathbb{ p }$とNを求めよ。
この動画を見る 

2024年共通テスト解答速報〜数学ⅠA第1問(2)〜福田の入試問題解説

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角形の辺の比(内分・外分・二等分線)#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
図 1 のように、電柱の影の先端は坂の斜面(以下、坂)にあるとする。また、坂には傾斜を表す道路標識が設置されていてをそこには 7 %と表示されているとする。電柱の太さと影の幅は無視して考えるものとする。また。地面と坂は平面であるとし、地面と坂が交わってできる直線を$\ell$とする。電柱の先端を点 A とし、根もとを点 B とする。電柱の影について。地面にある部分を線分 BC とし、坂にある部分を線分 CD とする。線分BC、CDがそれぞれ$\ell$と重直であるとき、電柱の影は坂に向かってまっすぐにのびているということにする。
※図は動画内参照
電柱の影が坂に向かってまっすぐにのびているとする。このとき、 4 点 A.B. C. D を通る平面は$\ell$と重直である。その平面において、図 2 のように、直線 ADと直線BCの交点を P とすると、太陽高度とは $\angle APB$の大きさのことである。
※図は動画内参照
道路標識の 7 %という表示は、この坂をのぼったとき、100m の水平距離に対して 7m の割合で高くなることを示している。nを1以上 9 以下の整数とするとき、坂の傾斜角$\angle DCP$の大きさについて
$n° \lt \angle DCP \lt n°+1°$
を満たすnの値は シ である。
 以下では、$\angle DCP$の大きさは、ちょうどシ°であるとする。
ある日、電柱の影が坂に向かってまっすぐにのびていたとき、影の長さを調べたところBC= 7 m、 CD= 4 m であり、太陽高度は $angle\ APB$=45°であった。点 D から直線 AB に重直な直線を引き、直物 AB との交点を E とするとき
BE=ス×セm
であり
DE=(ソ+アタ×チ)m
である。よって電柱の高さは、小数点第2位で四捨五入するとソmであることがわかる。
別の日、電柱の影が坂に向かってまっすぐにのびていたときの太陽高度は刻= 42°であった。電住の高さがわかったので、前回調べた日からの影の長さの変化を知ることができる。電柱の影について、坂にある第分の長さは
$\dfrac{AB-テ×ト}{ナ+ニ×ト}m$
である。AB=ツmとして、これを計算することにより、この日の電柱の陰について、坂にある部分の長さは、前回調べた4mより約1.2mだけ長いことが分かる。

2024共通テスト過去問
この動画を見る 

階乗の入った方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n!=n^2+11n+40$を満たす自然数nを求めよ.
この動画を見る 

場合の数 集合の個数~ベン図も使えます~【さこすけ's サイエンスがていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
全体集合Uと,その部分集合A,Bに対して$n(U)=50,n(A∪B)=42,n(A∩B)=3,
n$($A$の補集合$∩B)=15$であるとき、次の集合の要素の個数を求めよ。
(1)$A$の補集合$∩B$の補集合        (2)$A∩B$の補集合      (3)$A$

500以上1000以下の整数のうち,次のような数は何個あるか。
(1)11の倍数でない整数  (2)11の倍数であるが3の倍数でない整数

60人の生徒に数学と英語の試験を行った。数学の合格者は50人,
英語の合格者は30人,2教科ともに不合格であった者は8人であった。
(1)2教科とも合格した者は何人か。(2)数学だけ合格した者は何人か。
この動画を見る 

勘で英検合格する確率は?

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
全部勘で英検やって合格する確率ってどれくらいですか?
この動画を見る 
PAGE TOP