ナイスな整数問題 - 質問解決D.B.(データベース)

ナイスな整数問題

問題文全文(内容文):
nを自然数とする.
$(4n-1)^{2n+1}+(4n+1)^{2n-1}$は$8n$で割り切れることを示せ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを自然数とする.
$(4n-1)^{2n+1}+(4n+1)^{2n-1}$は$8n$で割り切れることを示せ.
投稿日:2023.01.17

<関連動画>

整数問題2022 Σ10^10^k mod7

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^{2022}10^{10^k}=10^{10}+10^{10^2}+・・・・・・+10^{10^{2022}}$を$7$で割った余りを求めよ.
この動画を見る 

【高校数学】 数A-66 約数と倍数②

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①196の正の約数をすべて求めよう.

②630の正の約数の個数を求めよう.

③$ab+4a+2b+1=0$を満たす整数$a,b$の組をすべて求めよう.
この動画を見る 

面白不等式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,nは自然数である.
$\dfrac{57}{158}\lt \dfrac{m}{n}\lt \dfrac{25}{68}$
mの最小値を求めよ.
この動画を見る 

大学入試問題#229 大阪府立大学(2020) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$m,n$:整数
$0 \leqq n \leqq m$
$3m^2+mn-2n^2$が素数となるような組$(m,n)$を全て求めよ。

出典:2020年大阪府立大学 入試問題
この動画を見る 

麻布獣医 整数 素数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$素数、$a,b$自然数
$P=a^3+2a^2b-2ab^2-b^3$
$P$の1の位の数を求めよ

出典:麻布大学獣医学部 過去問
この動画を見る 
PAGE TOP