整数、素数、京都大学入試問題 数学 Japanese university entrance exam questions Kyoto University - 質問解決D.B.(データベース)

整数、素数、京都大学入試問題 数学 Japanese university entrance exam questions Kyoto University

問題文全文(内容文):
p,qともに素数
$p^q+q^p$が素数となるp,qをすべて求めよ

京大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,qともに素数
$p^q+q^p$が素数となるp,qをすべて求めよ

京大過去問
投稿日:2018.03.23

<関連動画>

ショート動画か!

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)$の1の位の数を求めよ。

この動画を見る 

大学入試問題#127 関西大学(1991) 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ますただ
問題文全文(内容文):
$l,m,n$:正の整数
$l^2mn=64$を満たす組($l,m,n$)の個数を求めよ。

出典:1991年関西大学 入試問題
この動画を見る 

大阪公立大 フェルマーの小定理を利用した証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#大阪公立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023大阪公立大学過去問題
p素数 a,n自然数
$4n^2+4n-1=ap$なら
①2n+1とapは互いに素であることを示せ
②$2^{\frac{p-1}{2}}-1$はpで割り切れることを示せ
この動画を見る 

ガウス記号・漸化式・合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[(7+\sqrt{41}^{2021}]$を$2^{2021}$で割った余りを求めよ.
この動画を見る 

一発で二重根号を外せ

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
二重根号を外せ.
$\sqrt{283-36\sqrt{30}}$
$\sqrt{111+24\sqrt{10}}$
この動画を見る 
PAGE TOP