大阪大 微分 立命館 数式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

大阪大 微分 立命館 数式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
立命館大学過去問題
a,b実数 次の式が成り立つa,bを求めよ。
$a^2+10b^2-6ab-2b= -1$

大阪大学過去問題
(1,0)を通り、$y=x^4-2x^2+1$に接する直線の方程式をすべて求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#大阪大学#立命館大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
立命館大学過去問題
a,b実数 次の式が成り立つa,bを求めよ。
$a^2+10b^2-6ab-2b= -1$

大阪大学過去問題
(1,0)を通り、$y=x^4-2x^2+1$に接する直線の方程式をすべて求めよ。
投稿日:2018.06.11

<関連動画>

kとk+1ということは・・・【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nとkを自然数とし、整数$x^{n}$を整数(x-k)(x-k-1)で割ったあまりをax+bとする。
(1)aとbは整数であることを示せ
(2)aとbをともに割り切る素数は存在しないことを示せ

京都大過去問
この動画を見る 

福田のわかった数学〜高校2年生084〜三角関数(23)重要な変形(1)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(23) 重要な変形(1)\\
\triangle ABCにおいて\\
\sin2A+\sin2B+\sin2C=4\sin A\sin B\sin C\\
を証明せよ。
\end{eqnarray}
この動画を見る 

【高校数学】等式の証明~恒等式の証明の基礎~ 1-8【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

計算不要! 反比例と面積 2024早稲田佐賀

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△OAE,△ABE,四角形BECDの面積の大小関係を答えよ
*図は動画内参照
2024早稲田佐賀高等学校(改)
この動画を見る 

問題の背景を探る ハンガリーJr数学Olympic

アイキャッチ画像
単元: #複素数平面#円#三角関数#複素数#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a^2+b^2=81$
$x^2+y^2=121$
$ax+by=99$
$ay-bx=?$
これを解け.

ハンガリーjr数学オリンピック過去問
この動画を見る 
PAGE TOP