和歌山大 ド・モアブルの定理 Japanese university entrance exam questions - 質問解決D.B.(データベース)

和歌山大 ド・モアブルの定理 Japanese university entrance exam questions

問題文全文(内容文):
和歌山大学過去問題
$a_1=b_1=1$
$a_{n+1}=a_n-b_n$
$b_{n+1}=a_n+b_n$
(1)$a_n+b_ni= (1+i)^n$を数学的帰納法で証明せよ。
(2)$a_N=2^{100}$となる自然数Nをすべて求めよ。
単元: #大学入試過去問(数学)#複素数平面#数列#数学的帰納法#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$a_1=b_1=1$
$a_{n+1}=a_n-b_n$
$b_{n+1}=a_n+b_n$
(1)$a_n+b_ni= (1+i)^n$を数学的帰納法で証明せよ。
(2)$a_N=2^{100}$となる自然数Nをすべて求めよ。
投稿日:2018.06.13

<関連動画>

【高校数学】 数B-61 等差数列とその和④

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
初項$a$,公差$d$,末項$\ell$,項数$n$の等差数列の和を$S_n$とすると
$S_n=①=②$

次の等差数列の和を求めよう.

③初項-10,末項45,項数8

④初項64,公差-5,項数16

⑤$20,14,・・・-58$
この動画を見る 

熊本大(文)漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
一般項を求めよ

$a_1=\displaystyle \frac{2}{3}$

$2(a_n-a_{n+1})=(n+2)a_na_{n+1}$

熊本大学文学部
この動画を見る 

cos1°は有理数か【数学 入試問題】【チェビシェフ多項式】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$n$を自然数とする。
$cos(n+2)\theta+cos n\theta=2cos(n+1)\theta cos\theta$を示せ。

(2)自然数$n$に対し、$cosn\theta=T_n(cos\theta)$を満たす整数係数の$n$次の整式$T_n(x)$が存在することを示せ。

(3)$cos1°$が無理数であることを証明せよ。

数学入試問題過去問
この動画を見る 

【数B】数列:基礎からわかる確率漸化式!!四面体の頂点を移動する点がn秒後に他の頂点にいる確率

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCの頂点を移動する点Pがある。 点Pは1つの頂点に達してから1秒後に、他の3つの頂点の いずれかに各々確率1/3で移動する。 最初に頂点Oにいた点Pがn秒後に頂点Aにいる確率Pnを求めよ。
この動画を見る 

【高校数学】 数B-58 等差数列とその和②

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①初項3,公差4の等差数列において,47となる項は第何項か求めよう.

②$4,k,6k$が等差数列であるとき,$k$の値を求めよう.

③第10項が31,第25項が76である等差数列$\{a_n \}$の一般項を求めよう.
この動画を見る 
PAGE TOP