早稲田 整数問題 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

早稲田 整数問題 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
早稲田大学過去問題
m,nは自然数。p,qは素数(p<q)
1~nまでの自然数の中でnと互いに素である自然数の個数をf(n)とする。
(1)$f(pq)=24$となるp,qを求めよ。
(2)$f(2^m3^n)$をm,nで表せ。
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
m,nは自然数。p,qは素数(p<q)
1~nまでの自然数の中でnと互いに素である自然数の個数をf(n)とする。
(1)$f(pq)=24$となるp,qを求めよ。
(2)$f(2^m3^n)$をm,nで表せ。
投稿日:2018.06.28

<関連動画>

数学オリンピック予選

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1^{2001}+2^{2001}+3^{2001}+…+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ。

出典:2001年数学オリンピック 予選問題
この動画を見る 

整数問題 基本問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを整数とする.
$n^8-6n^6+9n^4-4n^2$は720の倍数であることを示せ.
この動画を見る 

大学入試問題#912「解答を綺麗にする時間がなかった」 #自治医科大学2024

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$0 \leq k:$整数
$N=\displaystyle \frac{k^2+k+300}{k^3+k^2+2k+2}$が自然数となるときのすべての$k$の値の和$S$を求めよ。

出典:2024年自治医科大学
この動画を見る 

Math Video: How To Solve Congruent Expressions Most Easily

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学 合同式を英語で解説
この動画を見る 

一橋大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数

(1)
$n^2$と$2n+1$は互いに素、示せ

(2)
$n^2+2$が$2n+1$の倍数となる$n$を求めよ

出典:1992年一橋大学 過去問
この動画を見る 
PAGE TOP