福田の一夜漬け数学〜数列・群数列(3)〜高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数列・群数列(3)〜高校2年生

問題文全文(内容文):
\begin{eqnarray}
\begin{array}{|c|c|c|c|c}
\hline 1 & 2 & 5 & 10 & \\
\hline 4 & 3 &6 & 11 & \\
\hline 9 & 8 & 7 & 12 & \\
\hline 16 & 15 & 14 & 13 & \\
\hline \\
\end{array}\\
\\
上図のように自然数を配置していく。\\
m行目、n列目にある数をa(m,n)と\\
表すことにする。\\
例えば、a(3,2)=8 である。\\
次の問いに答えよ。\\
\\
(1)a(1,n) (2)a(m,m) (3)a(m,n)\\
(4)150は何行目の何列目に出てくるか。
\end{eqnarray}
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
\begin{array}{|c|c|c|c|c}
\hline 1 & 2 & 5 & 10 & \\
\hline 4 & 3 &6 & 11 & \\
\hline 9 & 8 & 7 & 12 & \\
\hline 16 & 15 & 14 & 13 & \\
\hline \\
\end{array}\\
\\
上図のように自然数を配置していく。\\
m行目、n列目にある数をa(m,n)と\\
表すことにする。\\
例えば、a(3,2)=8 である。\\
次の問いに答えよ。\\
\\
(1)a(1,n) (2)a(m,m) (3)a(m,n)\\
(4)150は何行目の何列目に出てくるか。
\end{eqnarray}
投稿日:2018.05.03

<関連動画>

福田の数学〜早稲田大学2021年人間科学部第5問〜漸化式の作成と値の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 半径r_1=2の円O_1に接する平行でない2つの直線がある。接点をA,Bとし、2つの\\
直線の交点をPとし、\angle APB=\frac{\pi}{3}とする。O_1より半径が小さく、O_1の中心を通り、\\
直線APと直線BPに接する円をO_2とする。同様に自然数nに対して、O_nより半径が\\
小さく、O_nの中心を通り、直線APと直線BPに接する円をO_{n+1}とする。\\
O_nの半径をr_nとするとき、\frac{r_n}{r_{n+1}}=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }} となる。\\
次に、n個の円O_1,O_2,\ldots,O_nの面積の和をS_nとするとき、S_{10}の整数部分は\\
\boxed{\ \ ヒ\ \ }である。
\end{eqnarray}
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(6)その他色々〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
次の漸化式を解け。(すべてa_1=1とする)\\
a_{n+1}=\frac{a_n}{4a_n-1}\\
a_{n+1}=2\sqrt{a_n}\\
a_{n+1}=2(n+1)a_n\\
\\
\\
a_{n+1}=\frac{4a_n+8}{a_n+6}\\
\end{eqnarray}
この動画を見る 

【数B】数列:和の記号∑、シグマの展開! 次の和S[n]を求めよ。S[n]=1/(1+√3)+1/(√3+√5)+1/(√5+√7)+…+1/(√(2n-1)+√(2n+1))

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【数B】次の和S[n]を求めよ。
S[n]=1/(1+√3)+1/(√3+√5)+1/(√5+√7)+...+1/(√(2n-1)+√(2n+1))
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第4問〜数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large第4問}\\
初項3、交差pの等差数列を\left\{a_n\right\}とし、初項3、公比rの等比数列を\left\{b_n\right\}と\\
する。ただし、p \ne 0かつr \ne 0とする。さらに、これらの数列が次を満たすとする。\\
a_nb_{n+1}-2a_{n+1}b_n+3b_{n+1}=0 (n=1,2,3,\ldots)\cdots①\\
\\
(1)pとrの値を求めよう。自然数nについて、a_n,a_{n+1},b_nはそれぞれ\\
a_n=\boxed{\ \ ア\ \ }+(n-1)p \cdots②\\
a_{n+1}=\boxed{\ \ ア\ \ }+np \cdots③\\
b_n=\boxed{\ \ イ\ \ }r^{n-1}\\
と表される。r \ne 0により、すべての自然数nについて、b_n \ne 0となる。\\
\frac{b_{n+1}}{b_n}=rであることから、①の両辺をb_nで割ることにより\\
\boxed{\ \ ウ\ \ }a_{n+1}=r\left(a_n+\boxed{\ \ エ\ \ }\right) \cdots④\\
が成り立つことが分かる。④に②と③を代入すると\\
\left(r-\boxed{\ \ オ\ \ }\right)pn=r\left(p-\boxed{\ \ カ\ \ }\right)+\boxed{\ \ キ\ \ } \cdots⑤\\
となる。⑤が全てのnで成り立つことおよびp \ne 0により、r=\boxed{\ \ オ\ \ }を得る。\\
さらに、このことから、p=\boxed{\ \ ク\ \ }を得る。\\
以上から、すべての自然数nについて、a_nとb_nが正であることもわかる。\\
\\
(2)p=\boxed{\ \ ク\ \ }, r=\boxed{\ \ オ\ \ }であるから、\left\{a_n\right\}, \left\{b_n\right\}の初項から第n項\\
までの和は、それぞれ次の式で与えられる。\\
\sum_{k=1}^na_k=\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}n\left(n+\boxed{\ \ サ\ \ }\right)\\
\sum_{k=1}^nb_k=\boxed{\ \ シ\ \ }\left(\boxed{\ \ オ\ \ }^n-\boxed{\ \ ス\ \ }\right)\\
\\
(3)数列\left\{a_n\right\}に対して、初項3の数列\left\{c_n\right\}が次を満たすとする。\\
a_nc_{n+1}-4a_{n+1}c_n+3c_{n+1}=0 (n=1,2,3,\ldots)\cdots⑥\\
a_nが正であることから、⑥を変形して、c_{n+1}=\frac{\boxed{\ \ セ\ \ }a_{n+1}}{a_n+\boxed{\ \ ソ\ \ }}c_nを得る。\\
さらに、p=\boxed{\ \ ク\ \ }であることから、数列\left\{c_n\right\}は\boxed{\boxed{\ \ タ\ \ }}ことがわかる。\\
\\
\boxed{\boxed{\ \ タ\ \ }}の解答群\\
⓪すべての項が同じ値をとる数列である\\
①公差が0でない等差数列である\\
②公比が1より大きい等比数列である\\
③公比が1より小さい等比数列である\\
④等差数列でも等比数列でもない\\
\\
(4)q,uは定数でq \ne 0とする。数列\left\{b_n\right\}に対して、初項3の数列\left\{d_n\right\}が\\
次を満たすとする。\\
d_nb_{n+1}-qd_{n+1}b_n+ub_{n+1}=0 (n=1,2,3,\ldots)\cdots⑦\\
r=\boxed{\ \ オ\ \ }であることから、⑦を変形して、d_{n+1}=\frac{\boxed{\ \ チ\ \ }}{q}(d_n+u)\\
を得る。したがって、数列\left\{d_n\right\}が、公比が0より大きく1より小さい\\
等比数列となるための必要十分条件は、q \gt \boxed{\ \ ツ\ \ }かつu=\boxed{\ \ テ\ \ }\\
である。\\
\end{eqnarray}
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(2)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
次の漸化式を解け。\\
\\
\left\{\begin{array}{1}
a_1=1\\
a_{n+1}=3a_n+2^n\\
\end{array}\right.\\
\\
\left\{\begin{array}{1}
a_1=1\\
a_{n+1}=2a_n+n^2+2n\\
\end{array}\right.\\
\end{eqnarray}
この動画を見る 
PAGE TOP