福田の一夜漬け数学〜数列・等差x等比型の和の裏技〜高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数列・等差x等比型の和の裏技〜高校2年生

問題文全文(内容文):
次の数列の和を求めよ。
$1・1, 4・3, 7・3^2, 10・3^3, \cdots, (3n-2)・3^{n-1}$

次の和を求めよ。
$S=2・\left(\frac{1}{3}\right)+4・\left(\frac{1}{3}\right)^2+6・\left(\frac{1}{3}\right)^3+\cdots+2n・\left(\frac{1}{3}\right)^n$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の数列の和を求めよ。
$1・1, 4・3, 7・3^2, 10・3^3, \cdots, (3n-2)・3^{n-1}$

次の和を求めよ。
$S=2・\left(\frac{1}{3}\right)+4・\left(\frac{1}{3}\right)^2+6・\left(\frac{1}{3}\right)^3+\cdots+2n・\left(\frac{1}{3}\right)^n$
投稿日:2018.04.29

<関連動画>

【高校数学】階差数列の問題演習~基礎的な問題~ 3-9.5【数学B】

アイキャッチ画像
単元: #数Ⅱ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

慶應義塾大(経済)数列の最大値

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2011慶應義塾大学過去問題
n=1,2,・・・100
$a_n=n3^n$・${}_{100} \mathrm{ C }_n$
$a_n$を最大にするnの値
この動画を見る 

等比数列 大阪大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数の列
$a_{1},a_{2},a_{3},a_{4},a_{5}$は等比数列
$S=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$
$S'=a_{1}-a_{2}-a_{3}-a_{4}-a_{5}$
$T=a^2_{1}+a^2_{2}+a^2_{3}+a^2_{4}+a^2_{5}$

(1)
$\displaystyle \frac{T}{S}=S'$を示せ

(2)
$T$が素数のとき、$T$の値は?


出典:1987年大阪大学 過去問
この動画を見る 

階乗(❗️)に関する問題 常総学院

アイキャッチ画像
単元: #数学(中学生)#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{(n+2)!}{n!} = 20$のときn=?

常総学院高等学校(改)
この動画を見る 

【数B】数列:特性方程式はなぜ解けるのか

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=4,a_{n+1}=2a_n-1$のとき、一般項$a_n$を求めよ
この動画を見る 
PAGE TOP