福田の一夜漬け数学〜数列・シグマ記号(1)〜高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数列・シグマ記号(1)〜高校2年生

問題文全文(内容文):
次の和を求めよ。
(1)$\displaystyle \sum_{k=1}^n(3k^2+7k+2)$
(2)$\displaystyle \sum_{k=1}^nk(k^2+1)$
(3)$\displaystyle \sum_{k=1}^n(-2)^{k-1}$

次の和を求めよ。
(1)$\displaystyle \sum_{k=1}^n\frac{1}{k(k+1)}$
(2)$\displaystyle \sum_{k=1}^n\frac{1}{\sqrt k+\sqrt{k+1}}$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の和を求めよ。
(1)$\displaystyle \sum_{k=1}^n(3k^2+7k+2)$
(2)$\displaystyle \sum_{k=1}^nk(k^2+1)$
(3)$\displaystyle \sum_{k=1}^n(-2)^{k-1}$

次の和を求めよ。
(1)$\displaystyle \sum_{k=1}^n\frac{1}{k(k+1)}$
(2)$\displaystyle \sum_{k=1}^n\frac{1}{\sqrt k+\sqrt{k+1}}$
投稿日:2018.04.26

<関連動画>

千葉大 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$n\geqq 2$であり,$a_n=\dfrac{(1+\sqrt3)^n+(1-\sqrt3)^n}{4}$である.
$a_n$は整数であり,$a_n$を$3$で割った余りは$2$であることを示せ.

2013千葉大過去問
この動画を見る 

04岡山県教員採用試験(数学:1-(4) 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(4)$
$a_1=1,S_n=n^2a_n$とする.
一般項$a_n$を求めよ.
この動画を見る 

福田のおもしろ数学284〜(1+1/n)^nが増加数列である証明

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数列 $ \large{ a }\scriptsize{ n } = \left(1+\frac{1}{n} \right)^n $ は増加することを証明せよ。
この動画を見る 

2024年共通テスト徹底解説〜数学ⅡB第4問数列〜福田の入試問題解説

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数B
指導講師: 福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第4問数列を徹底解説します

2024共通テスト過去問
この動画を見る 

【0から理解できる】数学B 等比数列の和 Σ(シグマ)の計算

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の和を求めよ。
(1)
$\displaystyle \sum_{k=1}^6 2^k$

(2)
$\displaystyle \sum_{k=1}^n (-3)^k$
この動画を見る 
PAGE TOP