千葉大 整数問題 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

千葉大 整数問題 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
千葉大学過去問題
Pを素数、nを2以上の自然数
$x^n-P^nx-P^{n+1}=0$は整数解をもたないことを証明せよ。
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
Pを素数、nを2以上の自然数
$x^n-P^nx-P^{n+1}=0$は整数解をもたないことを証明せよ。
投稿日:2018.08.06

<関連動画>

新潟大 指数・対数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
新潟大学過去問題
a,b,cは自然数
x,y,z,wは実数
$a^x=b^y=c^z=30^w$
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{w}$を満たすとき、a,b,cを求めよ。$(a \leqq b \leqq c )$
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(1)〜素因数分解と変数の値

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)整式X=6$a^3bc$+11$a^2b^2c$+3$ab^3c$がある。
(i)Xを因数分解するとX=$\boxed{\ \ ア\ \ }$である。
(ii)X=6270 を満たす(a,b,c)の組を全て求めると、(a,b,c)=$\boxed{\ \ イ\ \ }$である。ただし、a,b,cはそれぞれ2以上の整数とする。

2023慶應義塾大学薬学部過去問
この動画を見る 

福田のおもしろ数学421〜2つの条件を満たす素数p,qを求める

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$q^2-4$が$p$で割り切れ

$p^2-1$が$q$で割り切れる

ような素数$p,q$は?
   
この動画を見る 

【糸口を探せ!】整数:同志社国際高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\sqrt{24n}$と$\sqrt{n+27}$がともに整数になるような最小の自然数$n$の値を求めよ.

同志社国際高校過去問
この動画を見る 

整数問題 分数式

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数である.
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{3}{202}$
$(m,n)$をすべて求めよ.
この動画を見る 
PAGE TOP