開成高校 最小公倍数 - 質問解決D.B.(データベース)

開成高校 最小公倍数

問題文全文(内容文):
開成高校過去問題
最小公倍数が2010となる異なる2つの自然数の組み合わせの個数
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式
指導講師: 鈴木貫太郎
問題文全文(内容文):
開成高校過去問題
最小公倍数が2010となる異なる2つの自然数の組み合わせの個数
投稿日:2018.08.11

<関連動画>

開成高校 整数問題 最大公約数・最小公倍数

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)#開成高等学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数$(a \lt b)$
最大公約数を$g(\neq 1)$
最小公倍数を$l$
$a^2+b^2+g^2+l^2=1300$
$a,b$を求めよ

出典:開成高等学校 過去問
この動画を見る 

横浜市立(医)整数の基本問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とし,$1\leqq n \leqq 1000$である.
$n^5+1$が3の倍数となるnは何個か?

横浜市立(医)過去問
この動画を見る 

整数問題 早稲田実業

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$c^2+4a^2+b^2 =65$を満たす正の整数a,b,cの組を求めよ。

早稲田実業学校
この動画を見る 

整数問題 説明できる? 数A

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
奇数の2乗から1を引いた数は8の倍数になる。
この動画を見る 

2021京都大 整数問題(理系)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^n-2^n$が素数なら$n$は素数であることを示せ.

2021京都大(理)
この動画を見る 
PAGE TOP