福田の1.5倍速演習〜合格する重要問題014〜東京大学2016年度理系数学第1問〜eの定義と不等式の証明 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題014〜東京大学2016年度理系数学第1問〜eの定義と不等式の証明

問題文全文(内容文):
eを自然対数の底、すなわち$e=\lim_{t \to \infty}\left(1+\frac{1}{t}\right)^t$とする。
すべての正の実数xに対し、次の不等式が成り立つことを示せ。
$\left(1+\frac{1}{x}\right)^x \lt e \lt \left(1+\frac{1}{x}\right)^{x+\frac{1}{2}}$

2016東京大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
eを自然対数の底、すなわち$e=\lim_{t \to \infty}\left(1+\frac{1}{t}\right)^t$とする。
すべての正の実数xに対し、次の不等式が成り立つことを示せ。
$\left(1+\frac{1}{x}\right)^x \lt e \lt \left(1+\frac{1}{x}\right)^{x+\frac{1}{2}}$

2016東京大学理系過去問
投稿日:2022.11.29

<関連動画>

福田のおもしろ数学510〜(n+1/n)のn乗がeより小であることの証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$n$を正の整数とするとき

$\left(1+\dfrac{1}{n}\right)^n \lt e$

を証明して下さい。

$e$は自然対数の底とする。
   
この動画を見る 

福田のおもしろ数学557〜AがBを割り切ることを証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

自然数$a,b,c$が次の性質を満たしている。

$a^b$は$b^a$を割り切る。

$b^c$は$c^b$を割り切る。

このとき、$a^c$は$c^a$を割り切ることを

証明して下さい。
    
この動画を見る 

福田のおもしろ数学348〜不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: 福田次郎
問題文全文(内容文):
$\frac{3}{2} \leqq x \leqq 5$のとき、$2\sqrt{ \mathstrut x+1 }+\sqrt{ \mathstrut 2x-3}+\sqrt{ \mathstrut 15-3x } \lt 2\sqrt{ \mathstrut 19 }$を証明してください。
この動画を見る 

福田のおもしろ数学222〜条件付きの不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a \geq b \geq c, \, x \geq y \geq z, \, x+y+z=0$ のとき、$ax+by+cz \geq 0$ を示せ。
この動画を見る 

福田のおもしろ数学285〜(1+1/n)^(n+1)が減少数列である証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$
b_{n}=(1 + \frac{1}{n})^{n+1}
\
で定まる数列 \{ b_{n} \}は減少数列であることを示せ。
$
この動画を見る 
PAGE TOP