福田の1.5倍速演習〜合格する重要問題042〜明治大学2019年度理工学部第1問(3)〜定積分で表された関数 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題042〜明治大学2019年度理工学部第1問(3)〜定積分で表された関数

問題文全文(内容文):
(3)関数f(x)が等式
$f(x)=\pi x\sin x+\frac{2\pi}{\displaystyle\int_0^{\frac{\pi}{2}}f(t)dt}$
を満たすとき、
$f(x)=\pi x\sin x-\boxed{ス}+\sqrt{\boxed{セ}}$
または
$f(x)=\pi x\sin x-\boxed{ス}-\sqrt{\boxed{セ}}$
である。

2019明治大学理工学部過去問
単元: #積分とその応用#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)関数f(x)が等式
$f(x)=\pi x\sin x+\frac{2\pi}{\displaystyle\int_0^{\frac{\pi}{2}}f(t)dt}$
を満たすとき、
$f(x)=\pi x\sin x-\boxed{ス}+\sqrt{\boxed{セ}}$
または
$f(x)=\pi x\sin x-\boxed{ス}-\sqrt{\boxed{セ}}$
である。

2019明治大学理工学部過去問
投稿日:2022.12.27

<関連動画>

#富山大学推薦2019#定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{\sqrt{ 3 }} \displaystyle \frac{x}{x^2+1} dx$

出典:2019年富山大学推薦
この動画を見る 

#南山大学2021#定積分_32

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ 2 }} x\sqrt{ 4-x^2 } dx$

出典:2021年南山大学
この動画を見る 

【高校数学】毎日積分71日目~47都道府県制覇への道~【⑮広島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【広島大学 2023】
関数$\displaystyle f(x)=log\frac{3x+3}{x^2+3}$について、次の問いに答えよ。
(1) $y=f(x)$のグラフの概形をかけ。ただし、グラフの凹凸は調べなくてよい。
(2) $s$を定数とするとき、次の$x$についての方程式(*)の異なる実数解の個数を調べよ。
(*) $f(x)=s$
(3) 定積分$\displaystyle\int_0^3\frac{2x^2}{x^2+3}dx$の値を求めよ。
(4) (2)の(*)が実数解をもつ$s$に対して、(2)の(*)の実数解のうち最大のものから最小のものを引いた差を$g(s)$とする。ただし、(2)の(*)の実数解が一つだけであるときには$g(s)=0$とする。関数$f(x)$の最大値を$α$とおくとき、定積分$\displaystyle\int_0^αg(s)ds$の値を求めよ。
この動画を見る 

【高校数学】毎日積分42日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^\frac{π}{2}\frac{1}{sinx+cosx+1}dx$
これを解け.
この動画を見る 

2019 東大入試問題 タクミの東大入試問題解説が聴けるのはここだけ!Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\int_0^1(x^2+\displaystyle \frac{x}{\sqrt{ 1+x^2 }})(1+\displaystyle \frac{x}{(1+x^2)\sqrt{ 1+x^2 }})d_{x}\end{eqnarray}$

出典:2019年東京大学入試問題
この動画を見る 
PAGE TOP