順天堂・御茶ノ水女子 複素数 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

順天堂・御茶ノ水女子 複素数 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
順天堂大学過去問題
1⃣
$α^4+α^3+α^2+α+1=0$
$α^6(α^7+1)(α+1)$の値

2⃣
$\sqrt3 + i +z$の絶対値を最大にする複素数Z
ただし|Z|=1
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
順天堂大学過去問題
1⃣
$α^4+α^3+α^2+α+1=0$
$α^6(α^7+1)(α+1)$の値

2⃣
$\sqrt3 + i +z$の絶対値を最大にする複素数Z
ただし|Z|=1
投稿日:2018.10.19

<関連動画>

福田の数学〜立教大学2021年理学部第4問〜極形式で与えられたzの計算

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 複素数zをz=\cos\frac{2\pi}{7}+i\sin\frac{2\pi}{7}とする。ただし、iは虚数単位とする。また、\\
a=z+\frac{1}{z}, b=z^2+\frac{1}{z^2}, c=z^3+\frac{1}{z^3} とおく。次の問いに答えよ。\\
(1)z^7は有理数になる。その値を求めよ。\\
(2)z+z^2+z^3+z^4+z^5+z^6 は有理数になる。その値を求めよ。\\
(3)A=a+b+c は有理数になる。その値を求めよ。\\
(4)B=a^2+b^2+c^2 は有理数になる。その値を求めよ。\\
(5)C=ab+bc+ca は有理数になる。その値を求めよ。\\
(6)D=a^3+b^3+c^3-3abc は有理数になる。その値を求めよ。\\
\end{eqnarray}

2021立教大学理工学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題075〜浜松医科大学2017年度医学部第1問〜複素数の実部と虚部

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)|z| ≦ |z-($\sqrt 3 + i$)|, |z-$\bar{z}$| ≦ 1および|z-$2i$| ≦ 2を同時にみたす複素数zに対応する点の領域を複素数平面上に図示せよ。
(2)(1)で得られた領域内の点に対応する複素数のうち、実部が最大となるものを$\alpha$、実部と虚部の和が最大となるものを$\beta$とするとき、$\alpha$と$\beta$を求めよ。
(3)次の式で定義される$w_n$の実部を$R_n$とするとき、無限級数$\displaystyle\sum_{n=1}^{\infty}R_n$の和を求めよ。
$w_n=\displaystyle\frac{\{1+(2-\sqrt 3)i\}(\sqrt 3+i)^{3(n-1)}}{2^{4(n-1)}}$ $(n=1,2,3,\dots)$

2017浜松医科大学医学部過去問
この動画を見る 

【数ⅢC】複素数平面の基本②複素数平面における絶対値の計算

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数の絶対値を求めよ
(1)$-3+4i$ (2)$(1-2i)^2$ (3)$\dfrac{2+3i}{5-i}$
2点$A(\alpha),B(\beta)$間の距離を求めよ
(1)$\alpha=3+4i,\beta=7+5i$ (2)$\alpha=-3i,\beta=5$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題015〜東京大学2016年度理系数学第4問〜複素数平面上の三角形が鋭角三角形になる条件

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
zを複素数とする。複素数平面上の3点$A(I),B(z),C(z^2)$が
鋭角三角形をなすようなzの範囲を定め、図示せよ。

2016東京大学理系過去問
この動画を見る 

学習院 複素数 絶対値の最大最小 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
学習院大学過去問題
複素数Z $(Z \neq 0)$
$ω=Z+\frac{1}{Z}+5$
|Z|=2
|ω|の最大値と最小値
この動画を見る 
PAGE TOP