問題文全文(内容文):
$\Large{\boxed{3}}$ 次の問に答えよ。
(1)次の条件(*)を満たす3つの自然数($a$,$b$,$c$)をすべて求めよ。
(*)$a \lt b \lt c$かつ$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}$である。
(2)偶数$2n(n \geqq 1)$の3つの正の約数$p,q,r$で$p \gt q \gt r$と$p+q+r=n$を満たす組($p,q,r$)の個数を$f(n)$とする。ただし、条件を満たす組が存在しない場合は、
$f(n)=0$とする。$n$が自然数全体を動くときの$f(n)$の最大値$M$を求めよ。
また、$f(n)=M$となる自然数$n$の中で最小のものを求めよ。
2017名古屋大学文系過去問
$\Large{\boxed{3}}$ 次の問に答えよ。
(1)次の条件(*)を満たす3つの自然数($a$,$b$,$c$)をすべて求めよ。
(*)$a \lt b \lt c$かつ$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}$である。
(2)偶数$2n(n \geqq 1)$の3つの正の約数$p,q,r$で$p \gt q \gt r$と$p+q+r=n$を満たす組($p,q,r$)の個数を$f(n)$とする。ただし、条件を満たす組が存在しない場合は、
$f(n)=0$とする。$n$が自然数全体を動くときの$f(n)$の最大値$M$を求めよ。
また、$f(n)=M$となる自然数$n$の中で最小のものを求めよ。
2017名古屋大学文系過去問
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 次の問に答えよ。
(1)次の条件(*)を満たす3つの自然数($a$,$b$,$c$)をすべて求めよ。
(*)$a \lt b \lt c$かつ$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}$である。
(2)偶数$2n(n \geqq 1)$の3つの正の約数$p,q,r$で$p \gt q \gt r$と$p+q+r=n$を満たす組($p,q,r$)の個数を$f(n)$とする。ただし、条件を満たす組が存在しない場合は、
$f(n)=0$とする。$n$が自然数全体を動くときの$f(n)$の最大値$M$を求めよ。
また、$f(n)=M$となる自然数$n$の中で最小のものを求めよ。
2017名古屋大学文系過去問
$\Large{\boxed{3}}$ 次の問に答えよ。
(1)次の条件(*)を満たす3つの自然数($a$,$b$,$c$)をすべて求めよ。
(*)$a \lt b \lt c$かつ$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}$である。
(2)偶数$2n(n \geqq 1)$の3つの正の約数$p,q,r$で$p \gt q \gt r$と$p+q+r=n$を満たす組($p,q,r$)の個数を$f(n)$とする。ただし、条件を満たす組が存在しない場合は、
$f(n)=0$とする。$n$が自然数全体を動くときの$f(n)$の最大値$M$を求めよ。
また、$f(n)=M$となる自然数$n$の中で最小のものを求めよ。
2017名古屋大学文系過去問
投稿日:2023.01.07