内心と比 - 質問解決D.B.(データベース)

内心と比

問題文全文(内容文):
AI:ID=?
*図は動画内参照
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AI:ID=?
*図は動画内参照
投稿日:2024.04.10

<関連動画>

【高校数学】 数A-56 2つの円の位置関係と共通接線③

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2つの円がTで内接している.
内側の円の接線が外側の円と交わる点を$A,B$とし,その接点を$P$とする.
このとき,$TP$は$\angle ATB$を2等分することを証明しよう.

図は動画内参照
この動画を見る 

【高校数学】  数A-19  確率① ・ さいころ編Part.1

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎3個のさいころを同時に投げるとき、次の場合の確率は?

①目の和が6になる。
②少なくとも1個は3の目が出る。
③目の積が5の倍数になる。
④少なくとも2個の目が同じである。
この動画を見る 

福田の数学〜まったく手が出ないときの対処法〜慶應義塾大学2023年総合政策学部第4問前編〜格子点を内包する軌道の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
平面上でx座標もy座標も整数である点を格子点という。 m とnを正の整数とするとき、xy平面上に点 $P_{ij}$(i = 1 , 2 ,・・・,j=1,2,・・・,n)を格子点(i,j)に置く。次にこれらの点を囲むようにA ( 0.5 , 0.5 ), B ( m + 0.5 , 0.5 ), C ( m + 0.5 ,n+ 0.5 ),D ( 0.5 ,n+ 0.5 )を頂点とする長方形を描く。
長方形ABCD の内側に以下のように「軌道」を作図する。
l. $P_{ij}$の外周の点(i= 1 またはi= m またはj= 1 またはj=nの点)を選び、その点から 0.5 の距離だけはなれた長方形 ABCD 上の点を軌道の起点とし、基点の置かれた辺と 45°の角度をなす直線の軌道を長方形 ABCD 内に描く。
2. 軌道が長方形 ABCD の別の辺にぶつかった場合、軌道を直角に曲げる。この操作を繰り返すと、軌道はいずれ起点に戻るので、そこで描くのを停止すると、一筆書きで閉じた 1 つの軌道が得られる。
3.ステップ 1 と 2 で描いた軌道の内側にすべての点 $P_{i,j}$が含まれているようなら、作図を終了する。軌道の外にある点が残っている場合、まだ軌道の外にある外周の点 $P_{i,j}$ を選び、ステップ 1 以降の操作を繰り返す。すべての点 $P_{i,j}$を軌道内に納めるために必要な最小の軌道の数を T(m,n)と書くことにする。右の図は T(4,2)= 2 であることを示している。(異なる軌道を破線と点線で描き分けた)
(l) T ( 4 , 4 )は$\fbox{ア}$である。
( 2 ) T ( 15 , 5 )は$\fbox{イ}$である。
( 3 ) T ( 2023 , 1015 )は$\fbox{ウ}$である。
( 4 )下の 12 個の T ( m ,n)の値の最大値は$\fbox{エ}$であり、最大値を取るものが$\fbox{オ}$個ある。T(2,1), T(3, 2 ), T(8, 5 ), T(6, 3 ), T(9, 6 ), T ( 24 , 15 ), T ( 63 , 39 ), T ( 165 ,102 ),T ( 699 , 267 ), T ( 2961 ,1131), T ( 7752 , 4791) , T ( 32838 , 12543 )

2023慶應義塾大学総合政策学部過去問
この動画を見る 

円錐と内接球3つ D 立教新座(改)2021

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
球Pと球Qは半径が等しい
球Pと球Rは半径が異なる
(1)球Pの半径は?
(2)球Rの半径は?
*図は動画内参照

2021立教新座高等学校(改)
この動画を見る 

福田の数学〜一橋大学2024年文系第5問〜円の中心を含む三角形になる確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $n$を3以上の奇数とする。円に内接する正$n$角形の頂点から無作為に相異なる3点を選んだ時、その3点を頂点とする三角形の内部に円の中心が含まれる確率$p_n$を求めよ。
この動画を見る 
PAGE TOP