【数学II】tanθの加法定理と直線の方程式 - 質問解決D.B.(データベース)

【数学II】tanθの加法定理と直線の方程式

問題文全文(内容文):
【数学II】tanθの加法定理と直線の方程式の解説動画です
-----------------
(0,3)を通り、直線$y=\displaystyle \frac{1}{2}x+2$と$\displaystyle \frac{\pi}{3}$の角をなす直線の方程式を求めよ。
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学II】tanθの加法定理と直線の方程式の解説動画です
-----------------
(0,3)を通り、直線$y=\displaystyle \frac{1}{2}x+2$と$\displaystyle \frac{\pi}{3}$の角をなす直線の方程式を求めよ。
投稿日:2019.10.27

<関連動画>

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。三角関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [1](1)次の問題Aについて考えよう。\\
問題A 関数y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})の最大値を求めよ。\\
\\
\sin\frac{\pi}{\boxed{\ \ ア\ \ }}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{\ \ ア\ \ }}=\frac{1}{2} であるから、三角関数の合成により\\
y=\boxed{\ \ イ\ \ }\sin(\theta+\frac{\pi}{\boxed{\ \ ア\ \ }})\\
\\
と変形できる。よって、yは\theta=\frac{\pi}{\boxed{\ \ ウ\ \ }}で最大値\boxed{\ \ エ\ \ }をとる。\\
\\
(2)pを定数とし、次の問題Bについて考えよう。\\
問題B 関数y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})の最大値を求めよ。\\
(\textrm{i})p=0のとき、yは\theta=\frac{\pi}{\boxed{\ \ オ\ \ }}で最大値\boxed{\ \ カ\ \ }をとる。\\
\\
(\textrm{ii})p \gt 0のときは、加法定理\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alphaを用いると\\
y=\sin\theta+p\cos\theta=\sqrt{\boxed{\ \ キ\ \ }}\cos(\theta-\alpha)\\
\\
と表すことができる。ただし\alphaは\sin\alpha=\frac{\boxed{\ \ ク\ \ }}{\sqrt{\boxed{\ \ キ\ \ }}}, \cos\alpha=\frac{\boxed{\ \ ケ\ \ }}{\sqrt{\boxed{\ \ キ\ \ }}}, 0 \lt \alpha \lt \frac{\pi}{2}\\
\\
を満たすものとする。このとき、yは\theta=\boxed{\ \ コ\ \ }で最大値\sqrt{\boxed{\ \ サ\ \ }}をとる。\\
\\
(\textrm{iii})p \lt 0のとき、yは\theta=\boxed{\ \ シ\ \ }で最大値\sqrt{\boxed{\ \ ス\ \ }}をとる。\\
\\
\\
\boxed{\ \ キ\ \ }~\boxed{\ \ ケ\ \ }、\boxed{\ \ サ\ \ }、\boxed{\ \ ス\ \ }の解答群\\
⓪-1   ①1   ②-p   ③p   \\
④1-p   ⑤1+p   ⑥-p^2   ⑦p^2   ⑧1-p^2   \\
⑨1+p^2   ⓐ(1-p)^2   ⓑ(1+p^2)   \\
\\
\\
\boxed{\ \ コ\ \ }、\boxed{\ \ シ\ \ }の解答群\\
⓪0    ①\alpha    ②\frac{\pi}{2}\\
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

札幌医大 三角方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #三角関数とグラフ#加法定理とその応用
指導講師: 鈴木貫太郎
問題文全文(内容文):
札幌医科大学過去問題
xに関する方程式
$cos2x+acosx+b=0$
この方程式$0 \leqq x < 2\pi$の範囲で2個の異なる実数解を持つためのa,bに関する条件
この動画を見る 

【高校数学】3倍角の公式~簡単に導出できます~ 4-13.5【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
3倍角の公式についての説明動画です
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第1問〜三角関数、指数関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1](1)次の問題$A$について考えよう。
$\boxed{\boxed{問題A} 関数y=\sin\theta+\sqrt3\cos\theta\left(0 \leqq \theta \leqq \displaystyle \frac{\pi}{2}\right)$の最大値を求めよ。}$

$\sin\displaystyle \frac{\pi}{\boxed{\ \ ア\ \ }}=\displaystyle \frac{\sqrt3}{2},$ $\cos\displaystyle \frac{\pi}{\boxed{\ \ ア\ \ }}=\displaystyle \frac{1}{2}$
であるから、三角関数の合成により

$y=\boxed{\ \ イ\ \ }\sin\left(\theta+\displaystyle \frac{\pi}{\boxed{\ \ ア\ \ }}\right)$

と変形できる。よって、$y$は$\theta=\displaystyle \frac{\pi}{\boxed{\ \ ウ\ \ }}$で最大値$\ \boxed{\ \ エ\ \ }\ $をとる。

(2)$p$を定数とし、次の問題$B$について考えよう。
$\boxed{\boxed{問題B} 関数y=\sin\theta+p\cos\theta\left(0 \leqq \theta \leqq \frac{\pi}{2}\right)の最大値を求めよ。}$

$(\textrm{i})$ $p=0$のとき、$y$は$\theta=\displaystyle \frac{\pi}{\boxed{\ \ オ\ \ }}$で最大値$\ \boxed{\ \ カ\ \ }\ $をとる。
$(\textrm{ii})$ $p \gt 0$のときは、加法定理
$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$
を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{\boxed{\ \ キ\ \ }}}\cos(\theta-\alpha)$
と表すことができる。ただし、$\alpha$は
$\sin\alpha=\displaystyle \frac{\boxed{\boxed{\ \ ク\ \ }}}{\sqrt{\boxed{\boxed{\ \ キ\ \ }}}}$、$\cos\alpha=\frac{\boxed{\boxed{\ \ ケ\ \ }}}{\sqrt{\boxed{\boxed{\ \ キ\ \ }}}}$、$0 \lt \alpha \lt \displaystyle \frac{\pi}{2}$
を満たすものとする。このとき、$y$は$\theta=\boxed{\boxed{\ \ コ\ \ }}$で最大値
$\sqrt{\boxed{\boxed{\ \ サ\ \ }}}$をとる。

$(\textrm{iii})$ $p \lt 0$のとき、$y$は$\theta=\boxed{\boxed{\ \ シ\ \ }}$で最大値$\boxed{\boxed{\ \ ス\ \ }}$をとる。

$\boxed{\boxed{\ \ キ\ \ }}~\boxed{\boxed{\ \ ケ\ \ }}、\boxed{\boxed{\ \ サ\ \ }}、\boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返
し選んでもよい。)
⓪$-1$
①$1$
②$-p$
③$p$
④$1-p$
⑤$1+p$
⑥$-p^2$
⑦$p^2$
⑧$1-p^2$
⑨$1+p^2$
ⓐ$(1-p)^2$
ⓑ$(1+p)^2$


$\boxed{\boxed{\ \ コ\ \ }}、\boxed{\boxed{\ \ シ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$0$
①$\alpha$
②$\displaystyle \frac{\pi}{2}$


[2]二つの関数$f(x)=\displaystyle \frac{2^x+2^{-x}}{2}$、$g(x)=\displaystyle \frac{2^x-2^{-x}}{2}$ について考える。

(1)$f(0)=\boxed{\ \ セ\ \ }、g(0)=\boxed{\ \ ソ\ \ }$である。また、$f(x)$は相加平均
と相乗平均の関係から、$x=\boxed{\ \ タ\ \ }$で最小値$\ \boxed{\ \ チ\ \ }\$ をとる。
$g(x)=-2\$ となる$x$の値は$\log_2\left(\sqrt{\boxed{\ \ ツ\ \ }}-\boxed{\ \ テ\ \ }\right)$である。

(3)次の①~④は、$x$にどのような値を代入しても常に成り立つ。
$f(-x)=\boxed{\boxed{\ \ ト\ \ }}$ $\cdots$①
$g(-x)=\boxed{\boxed{\ \ ナ\ \ }}$ $\cdots$②
$\left\{f(x)\right\}^2-\left\{g(x)\right\}^2=\boxed{\ \ ニ\ \ }$ $\cdots$③
$g(2x)=\boxed{\ \ ヌ\ \ }\ f(x)g(x)$ $\cdots$④

$\boxed{\boxed{\ \ ト\ \ }}、\boxed{\boxed{\ \ ナ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$f(x)$
①$-f(x)$
②$g(x)$
③$-g(x)$


(3)花子さんと太郎さんは、$f(x)$と$g(x)$の性質について話している。

花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式($\textrm{A}$)~($\textrm{D}$)を考えてみたけど、
常に成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式($\textrm{A}$)~($\textrm{D}$)の$\beta$に何か具体
的な値を代入して調べてみたらどうかな。

太郎さんが考えた式
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta)$ $\cdots(\textrm{A})$
$f(\alpha+\beta)=f(\alpha)f(\beta)+g(\alpha)g(\beta)$ $\cdots(\textrm{B})$
$g(\alpha-\beta)=f(\alpha)f(\beta)+g(\alpha)g(\beta)$ $\cdots(\textrm{C})$
$g(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta)$ $\cdots(\textrm{D})$


(1),(2)で示されたことのいくつかを利用すると、式($\textrm{A}$)~($\textrm{D}$)のうち、
$\boxed{\boxed{\ \ ネ\ \ }}$以外の三つは成り立たないことが分かる。$\boxed{\boxed{\ \ ネ\ \ }}$は左辺と右辺
をそれぞれ計算することによって成り立つことが確かめられる。

$\boxed{\boxed{\ \ ネ\ \ }}$の解答群
⓪$(\textrm{A})$
①$(\textrm{B})$
②$(\textrm{C})$
③$(\textrm{D})$

2021共通テスト過去問
この動画を見る 

福田のわかった数学〜高校2年生073〜三角関数(12)三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(12) 最大最小(2)\hspace{40pt}\\
y=\cos2x+2a\sin x+1\\
の0 \leqq x \leqq \piにおける最大値、最小値を求めよ。
\end{eqnarray}
この動画を見る 
PAGE TOP