【数学Ⅱ】図形と方程式 領域の難問を打破する!! - 質問解決D.B.(データベース)

【数学Ⅱ】図形と方程式 領域の難問を打破する!!

問題文全文(内容文):
【数学Ⅱ】図形と方程式 領域の難問解説動画です
-----------------
直線$2kx+y+k^=0…①$における$k$がすべての実数を満たしながら動くとき、直線①が通る領域を図示せよ。
単元: #数Ⅱ#図形と方程式#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅱ】図形と方程式 領域の難問解説動画です
-----------------
直線$2kx+y+k^=0…①$における$k$がすべての実数を満たしながら動くとき、直線①が通る領域を図示せよ。
投稿日:2020.09.05

<関連動画>

福田の数学〜京都大学2022年文系第3問〜放物線と直交する2接線で囲まれる面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
xy平面上の2直線$L_1,L_2$は直交し、交点のx座標は$\frac{3}{2}$である。
また、$L_1,L_2$は共に曲線$C:y=\frac{x^2}{4}$に接している。このとき、$L_1,L_2$およびCで
囲まれる図形の面積を求めよ。

2022京都大学文系過去問
この動画を見る 

福田の数学〜立教大学2025理学部第1問(1)〜不等式と対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)自然数$n$に対して$a_n=2^n$とし、

積$a_1a_2\cdots a_n$を$A_n$とおく。

このとき、$A_n \geqq 10^{10}$を満たす最小の

$n$は$\boxed{ア}$である。

ただし、$\log_2 10=3.3219$とする。

$2025$年立教大学理学部過去問題
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第5問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}$関数$f(x)$を$f(x)=(x+1)(|x-1|-1)+2$で定める。
(1)$y=f(x)$のグラフをかきなさい。
(2)kを実数とする。このとき、方程式$f(x)=k$が異なる3つの実数解
をもつようなkの値の範囲は$\boxed{\ \ ア\ \ }$である。
(3)曲線$y=f(x)$上の点$P(0,f(0))$における接線lの方程式は$y=\boxed{\ \ イ\ \ }$である。
また、曲線$y=f(x)$と直線lは2つの共有点をもつが、点Pとは異なる共有点を
Qとするとき、点Qのx座標は$\boxed{\ \ ウ\ \ }$である。さらに、曲線$y=f(x)$と直線lで
囲まれた図形の面積は$\boxed{\ \ エ\ \ }$である。
(4)関数$F(x)$を$F(x)=\int_0^xf(t)dt$で定める。このとき、$F'(x)=0$を満たすxを
すべて求めると$x=\boxed{\ \ オ\ \ }$である。これより、関数$F(x)$は
$x=\boxed{\ \ カ\ \ }$で最小値$\boxed{\ \ キ\ \ }$をとることがわかる。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

福田の一夜漬け数学〜数学II 図形と方程式〜軌跡(9) 対称式の問題(その1)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 実数$x,y$が$x^2+y^2 \leqq 8$ を満たしながら変化するとき
(1)点$P(x+y,xy)$の存在範囲を図示せよ。
(2)$x+y+xy$の最大値、最小値を求めよ。
この動画を見る 

北海道大 三次方程式 実数解条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax^2+bx+c$
一次関数$g(x)$
$f(x)=f'(x)g(x)-6x$を満たす
(1)
$b,c$を$a$で表せ

(2)
$f(x)=0$が相異なる3つの実数解をもつ$a$の範囲を求めよ

出典:2019年北海道大学 過去問
この動画を見る 
PAGE TOP