筆算不要!!9999で割ったあまり 洛南高校附属中 - 質問解決D.B.(データベース)

筆算不要!!9999で割ったあまり 洛南高校附属中

問題文全文(内容文):
12340000を9999で割った余りを求めよ
洛南高等学校附属中学校
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
12340000を9999で割った余りを求めよ
洛南高等学校附属中学校
投稿日:2023.09.01

<関連動画>

整数問題 早稲田実業

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$c^2+4a^2+b^2 =65$を満たす正の整数a,b,cの組を求めよ。

早稲田実業学校
この動画を見る 

アジア太平洋数学オリンピックのナイスな整数問題

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは自然数である.
$a^2+b+c,a+b^2+c,a+b+c^2$
この3つのすべてが平方数になることはないことを示せ.

アジア太平洋数学オリンピック過去問
この動画を見る 

福田の数学〜約数の個数から元の数を特定する難問〜慶應義塾大学2023年総合政策学部第1問前編〜約数の個数と素因数分解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
整数nの正の約数の個数をd(n)と書くことにする。たとえば、 10 の正の約数は1 , 2 , 5 , 10 であるから d(10)= 4 である。
( 1 ) 2023 以下の正の整数nの中でd(n)=5となる数は$\fbox{ア}$個ある。
( 2 ) 2023 以下の正の整数nの中でd(n)=15となる数は$\fbox{イ}$個ある。
( 3 ) 2023 以下の正の整数nの中でd(n) が最大となるのは$n=\fbox{ウ}$のときである。

2023慶應義塾大学総合政策学部過去問
この動画を見る 

早稲田高等学院 高校入試に九九!?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
九九の表の81個の数の積を素因数分解せよ.

早稲田高等学院過去問
この動画を見る 

素因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$64000001$を素因数分解すると3つの素因数分解をもつ.
$pqr(p \lt q \lt r)q$の値を求めよ.
この動画を見る 
PAGE TOP