【数学IIB】図形と方程式まとめ(内分外分、直線の方程式、円の方程式、平行移動) - 質問解決D.B.(データベース)

【数学IIB】図形と方程式まとめ(内分外分、直線の方程式、円の方程式、平行移動)

問題文全文(内容文):
中心(1,4)、半径3の円の方程式は?
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
中心(1,4)、半径3の円の方程式は?
投稿日:2022.04.29

<関連動画>

福田の数学〜上智大学2021年TEAP利用文系第4問(2)〜線形計画法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} (2)\ 野菜Aには1個あたり栄養素x_1が8g、栄養素x_2が4g、栄養素x_3が2g\\
含まれ、野菜Bには1個あたり栄養素x_1が4g、栄養素x_2が6g、栄養素x_3\\
が6g含まれている。これら2種類の野菜をそれぞれ何個かずつ選んで\\
ミックスし野菜ジュースを作る。選んだ野菜は丸ごと全て用い、栄養素x_1\\
を42g以上、栄養素x_2を48g以上、栄養素x_3を30g以上含まれるように\\
したい。野菜Aの個数と野菜Bの個数の和をなるべく小さくしてジュース\\
を作るとき、野菜Aの個数a、野菜Bの個数bの組(a,\ b)は\\
\\
(a,\ b)=(\boxed{\ \ ヘ\ \ },\ \boxed{\ \ ホ\ \ }), (\boxed{\ \ マ\ \ },\ \boxed{\ \ ミ\ \ })\\
\\
である。ただし、 \boxed{\ \ ヘ\ \ } \lt \boxed{\ \ マ\ \ }とする。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

福田の数学〜立教大学2021年理学部第1問(2)〜3直線が1点で交わる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)\ tを実数とする。座標平面上の3つの直線\\
\\
\left\{
\begin{array}{1}
x+(2t-2)y-4t+2=0\\
x+(2t+2)y-4t-2=0\\
2tx+y-4t=0     \\
\end{array}
\right.\\
\\
が1つの点で交わるようなtの値を全て求めるとt=\boxed{\ \ イ\ \ }\ である。
\end{eqnarray}

2021立教大学理学部過去問
この動画を見る 

数学諦めて7年!私文数学超苦手女子が2点を通る直線の式が暗算数秒で出せるのか?

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2点を通る直線の式 解説動画です
この動画を見る 

福田の1.5倍速演習〜合格する重要問題083〜東北大学2018年度理系第1問〜直線の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面上における2つの放物線C:y=$(x-a)^2+b$, D:y=$-x^2$を考える。
(1)CとDが異なる2点で交わり、その2交点のx座標の差が1となるように実数a,bが動くとき、Cの頂点(a, b)の軌跡を図示せよ。
(2)実数a, bが(1)の条件を満たしながら動くとき、CとDの2交点を結ぶ直線が通過する範囲を定め、図示せよ。

2018東北大学理系過去問
この動画を見る 

東工大 積分 放物線と直線 面積最小値 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#不定積分・定積分#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=-2x^2+x+1$上の1点における接線と$y=x^2$とによって囲まれる部分の面積の最小値を求めよ。

出典:1967年 東京工業大学 過去問
この動画を見る 
PAGE TOP