2023高校入試解説17問目 3つの内接円 渋谷教育学園幕張 - 質問解決D.B.(データベース)

2023高校入試解説17問目 3つの内接円 渋谷教育学園幕張

問題文全文(内容文):
青○:半径3
緑○:半径4
赤○:半径=?
*図は動画内参照

2023渋谷教育学園幕張高等学校(改)
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
青○:半径3
緑○:半径4
赤○:半径=?
*図は動画内参照

2023渋谷教育学園幕張高等学校(改)
投稿日:2023.01.22

<関連動画>

角の二等分線➕平行線=❓

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xを求めよ
*図は動画内参照
この動画を見る 

群馬大(医)

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$log_{5832}n$が有理数で$\displaystyle \frac{1}{2} \lt log_{5832}n \lt 1$である自然数$n$を求めよ

出典:群馬大学医学部 過去問
この動画を見る 

大阪大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'13大阪大学過去問題
$n+1,n^3+3,n^5+5,n^7+7$
すべてが素数となるような自然数nは存在しないことを示せ
この動画を見る 

【数A】高2生必見!!2020年度 第2回 K塾高2模試 大問3_確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題5。平面幾何の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第5問 \triangle ABCの重心をGとし、線分AG上で点Aとは異なる位置に点Dをとる。\\
直線AGと辺BCの交点をEとする。また、直線BC上で辺BC上にはない位置に点Fをとる。\\
直線DFと辺ABの交点をP、直線DFと辺ACの交点をQとする。\\
(1)点Dは線分AGの中点であるとする。このとき、\triangle ABCの形状に関係なく\frac{AD}{DE}=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
である。また、点Fの位置に関係なく\frac{BP}{AP}=\boxed{\ \ ウ\ \ }×\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }},\\
\frac{CQ}{AQ}=\boxed{\ \ カ\ \ }×\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}であるので、常に\frac{BP}{AP}+\frac{CQ}{AQ}=\boxed{\ \ ケ\ \ }\\
\\
\\
\boxed{\ \ エ\ \ }~\boxed{\ \ ケ\ \ }の解答群\\
⓪BC ①BF ②CF ③EF ④FP ⑤FQ ⑥PQ\\
\\
(2)AB=9, BC=8, AC=6とし、(1)と同様に、点Dは線分AGの中点であるとする。\\
ここで、4点B,C,Q,Pが同一円周上にあるように点Fをとる。このとき、\\
\\
AQ=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ APであるから\\
\\
AP=\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}, AQ=\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チ\ \ }}であり、CF=\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }}である。\\
\\
(3)\triangle ABCの形状や点Fの位置に関係なく、常に\frac{BP}{AP}+\frac{CQ}{AQ}=10となるのは\\
\frac{AD}{DG}=\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}のときである。

\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 
PAGE TOP