【数C】平面ベクトル:単位ベクトルって何??公式がよくわからない!そんな疑問が1分半で解決♪ - 質問解決D.B.(データベース)

【数C】平面ベクトル:単位ベクトルって何??公式がよくわからない!そんな疑問が1分半で解決♪

問題文全文(内容文):
a→=(3,2)と同じ向きの単位ベクトルを求めなさい。
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
a→=(3,2)と同じ向きの単位ベクトルを求めなさい。
投稿日:2020.09.24

<関連動画>

福田の数学〜慶應義塾大学2023年医学部第1問(1)〜図形の証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#式と証明#平面上のベクトル#図形と計量#三角比への応用(正弦・余弦・面積)#図形と方程式#恒等式・等式・不等式の証明#点と直線#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)三角形ABCにおいて辺BCを4:3に内分する点をDとするとき、等式
$\boxed{\ \ あ\ \ }$$AB^2$+$\boxed{\ \ い\ \ }$$AC^2$=$AD^2$+$\boxed{\ \ う\ \ }$$BD^2$
が成り立つ。

203慶應義塾大学医学部過去問
この動画を見る 

【数学】中高一貫校用問題集:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習②

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
【問題】
$△ABC$(それぞれの位置ベクトルを$a、b、c$とする)について、以下の問いに答えよ。
(2)頂点$A$と辺$BC$の中点を通る直線のベクトル方程式
※(1)は①の動画で解説しています。
この動画を見る 

福田の数学〜立教大学2022年経済学部第2問〜平面ベクトルの直交条件

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
tを正の実数とする。$OA=1,\ OB=t$である三角形OABにおいて、$\overrightarrow{ a }=\overrightarrow{ OA }$
$\overrightarrow{ b }=\overrightarrow{ OB },\angle AOB=θ$とする。ただし、$0 \lt θ \lt \frac{\pi}{2}$とする。また、辺OAの中点
をM、辺OBを1:2に内分する点をNとする。次の問いに答えよ。
(1)$\overrightarrow{ AN }$と$\overrightarrow{ BM }$を$\overrightarrow{ a }$と$\overrightarrow{ b }$を用いて表せ。
(2)内積$\overrightarrow{ AN }・\overrightarrow{ BM }$を$t$と$\cos θ$を用いて表せ。
(3)$\overrightarrow{ AN }∟\overrightarrow{ BM }$であるとき、$\cos θ$を$t$を用いて表せ。
(4)$\overrightarrow{ AN }∟\overrightarrow{ BM }$であるとき、$\cos θ$の最小値とそれを与えるtの値をそれぞれ求めよ。
(5)$\overrightarrow{ AN }∟\overrightarrow{ BM }$となるθが存在するtの値の範囲を求めよ。

2022立教大学経済学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第1問(1)〜ベクトルの図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)点Oを中心とする半径1の円に内接する三角形ABCにおいて\\
-5\overrightarrow{ OA }+7\overrightarrow{ OB }+8\overrightarrow{ OC }=\overrightarrow{ 0 }\\
が成り立っているとする。また直線OAと直線BCの交点をPとする。\\
このとき線分BC,OPの長さを求めるとBC=\boxed{\ \ (あ)\ \ },OP=\boxed{\ \ (い)\ \ }\\
である。さらに三角形ABCの面積は\boxed{\ \ (う)\ \ }である。
\end{eqnarray}

2021慶應義塾大学医学部過去問
この動画を見る 

【数B】ベクトル:単位ベクトルを成分で表そう!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
アドバンスプラス数学B
問題616
$\vec{a}=(-3,4)$と同じ向きの単位ベクトル$\vec{e}$を求めよ。
この動画を見る 
PAGE TOP