福田の1.5倍速演習〜合格する重要問題098〜早稲田大学2020年度商学部第1問(1)〜積分方程式 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題098〜早稲田大学2020年度商学部第1問(1)〜積分方程式

問題文全文(内容文):
$\Large\boxed{1}$ (1)m, nを正の整数とする。n次関数f(x)が、次の等式を満たしているとき、f(x)=$\boxed{\ \ ア\ \ }$である。
$\displaystyle\int_0^x(x-t)^{m-1}f(t)dt$=$\left\{f(x)\right\}^m$

2020早稲田大学商学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)m, nを正の整数とする。n次関数f(x)が、次の等式を満たしているとき、f(x)=$\boxed{\ \ ア\ \ }$である。
$\displaystyle\int_0^x(x-t)^{m-1}f(t)dt$=$\left\{f(x)\right\}^m$

2020早稲田大学商学部過去問
投稿日:2023.02.04

<関連動画>

九州大 虚数解を持つ3次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+x^2-x+a=0$は絶対値が1である虚数解をもつ.
実数$a$の値と3つの解を求めよ.

1964九州大(文系)過去問
この動画を見る 

因数定理による因数分解の裏技2選

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
因数定理による因数分解の裏技2選紹介動画です

$x^3+15x^2+32x+12$
を因数分解
この動画を見る 

ただの4次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(x^2+3x+2)(x^2+9x+18)=168x^2$
この動画を見る 

神戸大 3次方程式の基本問題

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#複素数平面#一次不等式(不等式・絶対値のある方程式・不等式)#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は整数である。
$x^3+ax^2+bx+c=0$は$\alpha=\dfrac{3+\sqrt{7}i}{2}$と0以上1以下の解をもつ(a,b,c)をすべて求めよ.

神戸大過去問
この動画を見る 

慶應義塾 三次方程式 解と係数の関係 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$x^3-2x^2+3x-4=0$の3つの解をα,β,γとしたとき、次の式の値
(1)$α^4+β^4+γ^4$
(2)$α^5+β^5+γ^5$
この動画を見る 
PAGE TOP