福田の数学〜東京大学2023年文系数学第1問〜解と係数の関係と最小値 - 質問解決D.B.(データベース)

福田の数学〜東京大学2023年文系数学第1問〜解と係数の関係と最小値

問題文全文(内容文):
$\Large\boxed{1}$ kを正の実数とし、2次方程式$x^2+x-k$=0 の2つの実数解をα,βとする。
kがk>2の範囲を動くとき、
$\displaystyle\frac{\alpha^3}{1-\beta}$+$\displaystyle\frac{\beta^3}{1-\alpha}$
の最小値を求めよ。

2023東京大学文系過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ kを正の実数とし、2次方程式$x^2+x-k$=0 の2つの実数解をα,βとする。
kがk>2の範囲を動くとき、
$\displaystyle\frac{\alpha^3}{1-\beta}$+$\displaystyle\frac{\beta^3}{1-\alpha}$
の最小値を求めよ。

2023東京大学文系過去問
投稿日:2023.03.01

<関連動画>

複素関数論⑮コーシーの積分定理*6(1)(2)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
ex $\displaystyle \int_{c}^{} \ \dfrac{1}{z^2+4}dz$

(1)$C:$単位円の下半分に沿って,$-1$から$1$に至る曲線

(2)$C:$単位円の右半分に沿って,$-i$から$i$に至る曲線
この動画を見る 

【数Ⅱ】解と係数の関係と対称式 α²+β²の値【複数の方法で理解を深める】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ x^2+2x+5=0の解を\alpha,\betaとする.\alpha^2+\beta^2を求めよ.$
この動画を見る 

因数定理による因数分解の裏技2選

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
因数定理による因数分解の裏技2選紹介動画です

$x^3+15x^2+32x+12$
を因数分解
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(6)切り取られる弦の長さと中点(応用2)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=4$ $\cdots$①, 直線$y=m(x-4)$ $\cdots$②がある。次の問いに答えよ。
(1)①②が異なる2点で交わるように定数$m$の値の範囲を求めよ。
(2)(1)のとき、②が①によって切り取られる弦の中点の座標を$m$を用いて表せ。
(3)(1)で求めた範囲を$m$が動くとき、(2)の中点はどんな図形を描くか。
この動画を見る 

素数問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q,r$は異なる素数である.
$p^2=q^2+8r^2$を解け.
この動画を見る 
PAGE TOP