良問!!円の半径を求める 2022和歌山県ラスト問題 - 質問解決D.B.(データベース)

良問!!円の半径を求める 2022和歌山県ラスト問題

問題文全文(内容文):
3点A,P,Qを通る円の半径は?
*図は動画内参照

2022和歌山県
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
3点A,P,Qを通る円の半径は?
*図は動画内参照

2022和歌山県
投稿日:2022.07.02

<関連動画>

解けるように作られた問題 ガウス少年なら一瞬

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=\dfrac{25^x}{25^x+5}$
$f\left(\dfrac{1}{100}\right)+f\left(\dfrac{2}{100}\right)+・・・・・・+f\left(\dfrac{98}{100}\right)+f\left(\dfrac{99}{100}\right)$の値を求めよ.
この動画を見る 

【数A】整数の性質:φ関数(φ(6)について) 問題文「1~nまでの自然数でnと互いに素な自然数の個数を求めよ」

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1~nまでの自然数でnと互いに素な自然数の個数を求めよ
この動画を見る 

福田の数学〜三角比の基本の復習にどうぞ〜慶應義塾大学2023年経済学部第1問(1)〜三角形と外接円内接円の半径

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)$\triangle ABC$において
$sinA:sinB:sinC=3:7:8$
が成り立つとき、ある性の実数kを用いて
$a=\fbox{ア}k,b=\fbox{イ}k,c=\fbox{ウ}k$
と表すことができるので、この三角形の最も大きい角の余弦の値は$-\dfrac{\fbox{エ}}{\fbox{オ}}$であり、正弦の値は$-\fbox{カ}\sqrt{\fbox{キ}}$である。さらに$\triangle ABC$の面積が$54\sqrt{3}$であるとき、$k=\fbox{ク}$となるので、この三角形の外接円の半径は$\fbox{ケ}\sqrt{\fbox{コ}}$であり、内接円の半径は$\fbox{サ}\sqrt{\fbox{シ}}$である。

2023慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第2問(2)〜外接する円に接する直線

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)円x^2+y^2=1をCと表す。p \gt 1とし、点P(0,p)を通るCの2つの接線\\
をl_1,l_2とする。l_1,l_2の方程式は\\
\\
y=\boxed{\ \ タ\ \ }, y=\boxed{\ \ チ\ \ }\\
\\
であり、l_1,l_2が直交するのはp=\boxed{\ \ ツ\ \ }のときである。\\
p=\boxed{\ \ ツ\ \ }のとき、l_1,l_2を接線に持ち、かつCに外接する円の中で中心が\\
y軸上にある2つの円の半径は\boxed{\ \ テ\ \ }および\boxed{\ \ ト\ \ }である。
\end{eqnarray}

2021慶應義塾大学看護医療学部過去問
この動画を見る 

福田の数学〜不定方程式の自然数解を求めよう〜慶應義塾大学2023年経済学部第1問(2)〜点対称と不定方程式の自然数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
( 2 ) m,nを自然数とし、pを実数とする。平面上の点$(p,/dfrac{p}{2})$に関して点(m,n)と対称な点が$(-3m^2-4mn+5m,n^2-3n-3)$であるとき、関係式$\fbox{ス}m^2+2(\fbox{セ}n-\fbox{ソ}m)+2(n+\fbox{タ})(n-\fbox{チ})=0$
が成り立つ。ゆえに$m=\fbox{ツ},n=\fbox{テ},p=\fbox{トナ}$である。

2023慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP