こう見えて数3範囲 - 質問解決D.B.(データベース)

こう見えて数3範囲

問題文全文(内容文):
$\sqrt{x+1} = x-1$を解け
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{x+1} = x-1$を解け
投稿日:2022.06.08

<関連動画>

福田の数学〜明治大学2022年全学部統一入試理系第2問〜方程式の実数解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a$は$0<a<1$を満たす定数とする。 次の方程式の異なる実数解の個数を求めよう。

$x^2=a^-x$

$f(x) = x^2a^x$ とおけば、
$f(x)$ は $x = [ア]$で極小値$[イ]$をとり、$x= [ウ]$で極大値$[エ]$をとる。
また、$lim(x→-∞) f(x)= [オ]$であり、$ lim(x→∞) f(x)=0$ である。

2022明治大学全統理系過去問

この動画を見る 

福田のわかった数学〜高校3年生理系063〜微分(8)多重因子(2)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(8) 多重因子(2)\\
f(x)=ax^4+bx^3+cx^2+dx+e を\\
(x-1)^3で割った余りをf(1),f'(1),f''(1)を\\
用いて表せ。
\end{eqnarray}
この動画を見る 

早稲田大(商)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2+x+2)^{99}$
$=a_0+a_1x+a_2x^2+a_3x^3+…+a_{198}x^{198}$
$x^2+x+1=0$の1つの解を$\omega$とする

(2)
$f(\omega)$の値を求めよ

(2)
$S=\displaystyle \sum_{k=0}^{66} a_{3k}=a_0+a_3+a_6+…+a_{198}$

出典:1999年早稲田大学 商学部 過去問
この動画を見る 

慶應(医)三次方程式の解とΣ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8x^3-6x+1=0$の3つの解を$\alpha,\beta,\delta$とする.これを解け.
$\displaystyle \sum_{n=0}^{\infty}(\alpha^n+\beta^n+\delta^n)$

1993慶應(医)
この動画を見る 

3次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$126x^3-3x^2+3x-1=0$
この動画を見る 
PAGE TOP