ちょっと複雑な漸化式 - 質問解決D.B.(データベース)

ちょっと複雑な漸化式

問題文全文(内容文):
一般項を求めよ.
$a_1=2$
$a_{n+1}=30_n-4n+2^n+4$
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
一般項を求めよ.
$a_1=2$
$a_{n+1}=30_n-4n+2^n+4$
投稿日:2021.09.28

<関連動画>

漸化式と整数問題の融合

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$a_1=10,a_{n+1}=2a_n+3^{n+1}$
$a_n$が7の倍数となるような$n$を求めよ.
この動画を見る 

福田の数学〜慶應義塾大学2024年薬学部第1問(1)〜等差数列と等比中項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)$n$を自然数とする。数列$\left\{a_n\right\}$は初項が25, 公差が0でない等差数列であり、3つの項$a_8$, $a_9$, $a_{10}$を
$a_9$, $a_{10}$, $a_8$
の順に並べると等比数列になる。この数列の初項から第$n$項までの和を$S_n$とする。
(i)一般項$a_n$を$n$の式で表すと$a_n$=$\boxed{\ \ ア\ \ }$である。
(ii)不等式$S_n$<0 を満たす最小の$n$の値は$\boxed{\ \ イ\ \ }$である。
この動画を見る 

大阪市立大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
20216大阪市立大学過去問題
x,y整数 n自然数
$x^2+y^2$が$3^{2n-1}$の倍数ならx,yともに$3^n$の倍数であることを示せ
①n=1のとき
②n=2のとき
③すべての自然数n
この動画を見る 

数学「大学入試良問集」【13−11 ガウス記号とその戦略】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$x$に対し、$[x]$を$x$以下の最大の整数とする。
たとえば、$[2]=2,\left[ \dfrac{ 7 }{ 5 } \right]=1$である。
数列$\{a_n\}$を$a_k=\left[ \dfrac{ 3k }{ 5 } \right](k=1,2,・・・)$と定めるとき、以下の問いに答えよ。
(1)$a_1,a_2,a_3,a_4,a_5$を求めよ。
(2)$a_{k+5}=a_k+3(k=1,2,・・・)$を示せ。
(3)自然数$n$に対して、$\displaystyle \sum_{k=1}^{5n} a_k$を求めよ。
この動画を見る 

【高校数学】 数B-91 漸化式⑤

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=2,\dfrac{1}{a_{n+1}}=\dfrac{1}{a_n}+3^{n-1}$

②$a_1=\dfrac{1}{4},a_{n+1}=\dfrac{a_n}{3a_n+1}$
この動画を見る 
PAGE TOP