広島大 対数 3次方程式 解の個数 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

広島大 対数 3次方程式 解の個数 Mathematics Japanese university entrance exam

問題文全文(内容文):
$a$は正の定数
$log_a(3x)+log_{\sqrt{ a }}(a-x)=1$を満たす実数$x$がちょうど2つである$a$の範囲は?

出典:広島大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$は正の定数
$log_a(3x)+log_{\sqrt{ a }}(a-x)=1$を満たす実数$x$がちょうど2つである$a$の範囲は?

出典:広島大学 過去問
投稿日:2019.04.18

<関連動画>

福田の数学〜早稲田大学2025人間科学部第4問〜3次方程式の解が直角三角形を作る条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$k$を実数の定数となる。

$z$についての方程式

$z^3-5z^2+kz-5=0$の$3$つの解は

複素数平面上で斜辺$2$の直角三角形の頂点となる。

このとき、$k=\boxed{ト}$であり、

この直角三角形の面積は$\boxed{ナ}$である。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 

福田のおもしろ数学192〜連立方程式と対称式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 福田次郎
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + y^2 = 1 \\
x^3 + y^3 = 1
\end{array}
\right.
\end{eqnarray}$を解いて下さい。
この動画を見る 

#35 数検1級1次 過去問 複素数

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数平面#複素数#複素数平面#数学検定#数学検定1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ 1+\sqrt{ 3 }i }+\sqrt{ 1-\sqrt{ 3 }i }$を簡単にせよ
ただし、外側の平方根の実数部の値は正とする。
この動画を見る 

福田のわかった数学〜高校2年生第9回〜高次方程式の有理数解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
$a,b,c$を整数とするとき、3次方程式
$x^3+ax^2+bx+c=0$
が有理数解$s$をもつなら、$s$は整数である。
これを示せ。
この動画を見る 

ナイスな連立4元三次方程式

アイキャッチ画像
単元: #数A#数Ⅱ#複素数と方程式#整数の性質#ユークリッド互除法と不定方程式・N進法#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+bcd=30 \\\
b+acd=30 \\
c+abd=30 \\
d+abc=30
\end{array}
\right.
\end{eqnarray}$
を解け.
この動画を見る 
PAGE TOP