【理数個別の過去問解説】2021年度東京大学 数学 理科第2問(2)解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2021年度東京大学 数学 理科第2問(2)解説

問題文全文(内容文):
複素数$a,b,c$に対して整式$f(z)=az^2+bz+c$を考える。iを虚数単位とする。$f(0),f(1),f(i)$がいずれも1以上2以下の実数であるとき、$f(2)$のとりうる範囲を複素数平面上に図示せよ。
チャプター:

0:00 オープニング
0:05 f(2)を実部と虚部がわかる形で表す
2:11 ベクトル表記で表す
3:16 一部に注目して図示
6:31 残りの文字についても併せて図示
8:27 エンディング

単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数$a,b,c$に対して整式$f(z)=az^2+bz+c$を考える。iを虚数単位とする。$f(0),f(1),f(i)$がいずれも1以上2以下の実数であるとき、$f(2)$のとりうる範囲を複素数平面上に図示せよ。
投稿日:2021.04.25

<関連動画>

【数C】【複素数平面】複素数と図形3 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点$z$が、原点$\rm O$を中心とする半径1の円上を動くとき、次の点$w$はどのような図形を描くか。
(1) $w=\dfrac{1+i}{z}$ (2) $w=\dfrac{6z-1}{2z-1}$
この動画を見る 

複素数平面の基本⑨垂直二等分線を考える

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面における垂直二等分線を考える
この動画を見る 

【数C】【複素数平面】複素数と図形6 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面上の異なる4点$\rm A(\alpha),B(\beta),C(\gamma),D(\delta)$
について次のことが成り立つことを証明せよ。

2直線$\rm AB,CD$が垂直に交わる ⇔ $\dfrac{(\delta-\gamma)}{(\beta-\alpha)}$が純虚数
この動画を見る 

福田の数学〜上智大学2021年理工学部第3問〜複素数平面と図形

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ $i$を虚数単位とする。複素数zの絶対値を$|z|$と表す。
$w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}$ とし、$\alpha=w+w^4$ とする。

(1)$\alpha^2=\boxed{\ \ お\ \ }$である。これより、$\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}$である。
(2)複素数平面上の2点$\frac{i}{2}$,-1間の距離は$\boxed{\ \ か\ \ }$である。
(3)複素数平面上の2点$w^2,$ -1間の距離は$\boxed{\ \ き\ \ }$である。
(4)$\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta)$ (ただし、$r \gt 0,\ 0 \leqq \theta \lt 2\pi$)
とおくとき、$r=\boxed{\ \ く\ \ }$であり、$\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi$である。
(5)複素数平面上で、-1を中心都市$w^2$を通る円上をzが動くとする。
$x=\frac{1}{z}$とするとき、$x$は$|1+x|=\boxed{\ \ け\ \ }|x|$を満たし、$\boxed{\ \ こ\ \ }$を
中心とする半径$\boxed{\ \ さ\ \ }$の円を描く。

$\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }$の選択肢
$(\textrm{a})1  (\textrm{b})2  (\textrm{c})\alpha  (\textrm{d})2\alpha$
$(\textrm{e})\frac{\alpha}{2}+1  (\textrm{f})\frac{\alpha}{2}-1  (\textrm{g})-\frac{\alpha}{2}+1  (\textrm{h})-\frac{\alpha}{2}-1$
$(\textrm{i})\alpha+1  (\textrm{j})\alpha-1  (\textrm{k})-\alpha+1  (\textrm{l})-\alpha-1$
$(\textrm{m})\alpha+\frac{1}{2}  (\textrm{n})\alpha-\frac{1}{2}  (\textrm{o})-\alpha+\frac{1}{2}  (\textrm{p})-\alpha-\frac{1}{2}$

2021上智大学理工学部過去問
この動画を見る 

産業医科大 三角比の計算

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#産業医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{2}{7}\pi+\cos\dfrac{4}{7}\pi+\cos\dfrac{8}{7}\pi=?$

$\sin\dfrac{2}{7}\pi+\sin\dfrac{4}{7}\pi+\sin\dfrac{8}{7}\pi=?$

これらを求めよ。

産業医科大過去問
この動画を見る 
PAGE TOP