【数B】数列:Σを使った等比数列の和の考え方 - 質問解決D.B.(データベース)

【数B】数列:Σを使った等比数列の和の考え方

問題文全文(内容文):
Σの式を見てどう使うかを練習しましょう!!
チャプター:

0:00​ オープニング
0:25 等比の総和の使い方
4:10​ 実践

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Σの式を見てどう使うかを練習しましょう!!
投稿日:2021.05.12

<関連動画>

2023年京大の漸化式!典型的なパターンが詰まった問題です【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
{${ a_n}$}は次の条件を満たしている。

${ a_1}=3$、${ a_n}=\displaystyle \frac{{ S_n}}{n}+(n-1)・2^{n}(n=2,3,4…)$

ただし,${ S_n}={ a_1}+{ a_2}+・・・+{ a_n}$である。このとき、数列{${ a_n}$}の一般項を求めよ。

京都大過去問
この動画を見る 

室蘭工業大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#室蘭工業大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'17室蘭工業大学過去問題
$a_1=0,a_2=2$
$a_{n+2}=8(n+2)a_{n+1}-7(n^2+3n+2)a_n$
(1)$b_n=\frac{a_n}{n!}$として$b_n$を求めよ
(2)$a_n$を求めよ
この動画を見る 

福田の数学〜誘導付き3項間の漸化式を解く〜明治大学2023年全学部統一ⅠⅡAB第1問(1)〜3項間漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_{n+2}=4(a_{n+1}-a_n)$$(n=1,2,3,...)$
$a_1=2,a_2=16$
(1)$b_n=a_{n+1}-2a_n$$(n=1,2,3,...)$と置いて$b_n$を求めよ。
(2)$a_n$を求めよ。

2023明治大学全統過去問
この動画を見る 

熊本大(医)整数・数列・二次関数

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#整数の性質#数列#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7^n$の一の位を$a_n(n$自然数$)$

(1)
$a_{99}$


(2)
$-n^2+2na_n$の最大値とそのときの$n$

出典:1989年熊本大学医学部 過去問
この動画を見る 

【数B】数列:基礎からわかる確率漸化式!!四面体の頂点を移動する点がn秒後に他の頂点にいる確率

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCの頂点を移動する点Pがある。 点Pは1つの頂点に達してから1秒後に、他の3つの頂点の いずれかに各々確率1/3で移動する。 最初に頂点Oにいた点Pがn秒後に頂点Aにいる確率Pnを求めよ。
この動画を見る 
PAGE TOP