自分で考えろ! - 質問解決D.B.(データベース)

自分で考えろ!

問題文全文(内容文):
$42\times 37$の計算の様々なやり方に関して解説していきます.
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$42\times 37$の計算の様々なやり方に関して解説していきます.
投稿日:2021.06.10

<関連動画>

全体の面積を求めよ

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
正方形の対角線=10
全体の面積は?
*図は動画内参照
この動画を見る 

ざ・息抜き

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{2022}x^{\log_{2022}x}=x^2$の解の積の下3桁を求めよ.
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第4問〜条件を満たす部分集合の個数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} A_n=\left\{1,2,\ldots,n\right\}を、1からnまでの自然数の集合とする。SをA_nの部分集合\\
(空集合およびA_n自身も含む)としたとき、S'をSの要素それぞれに1を加えてできた\\
集合とする。またS''をS'の要素それぞれにさらに1を加えてできた集合とする。\\
たとえば、A_3=\left\{1,2,3\right\}の部分集合S=\left\{1,3\right\}の場合、S'=\left\{2,4\right\},S''=\left\{3,5\right\}\\
\\
(1)A_4=\left\{1,2,3,4\right\}の部分集合S=\left\{1,2,3\right\}はS \cup S'=A_4となる。このように\\
A_4の部分集合でS \cup S'=A_4となるものは\left\{1,2,3\right\}と\left\{1,\boxed{\ \ ア\ \ }\right\}の2つである。\\
\\
(2)A_nの部分集合SでS \cup S'=A_nとなるようなSの個数をa_nとすると、(1)から\\
分かるようにa_4=2であり\\
a_5=\boxed{\ \ イウ\ \ },a_6=\boxed{\ \ エオ\ \ },a_7=\boxed{\ \ カキ\ \ },a_8=\boxed{\ \ クケ\ \ },\ldots,a_{16}=\boxed{\ \ コサシ\ \ }\\
となる。\\
\\
(3)A_4=\left\{1,2,3,4\right\}の部分集合SでS \cup S''=A_4となるものはS=\left\{1,\boxed{\ \ ス\ \ }\right\}だけ\\
である。\\
\\
(4)A_nの部分集合SでS \cup S''=A_nとなるようなSの個数をb_nとすると、(3)から\\
分かうようにb_4=1であり\\
b_5=\boxed{\ \ セソ\ \ },b_6=\boxed{\ \ タチ\ \ },b_7=\boxed{\ \ ツテ\ \ },b_8=\boxed{\ \ トナ\ \ },\ldots,b_{16}=\boxed{\ \ ニヌネ\ \ }\\
となる。
\end{eqnarray}

2021慶應義塾大学環境情報学部過去問
この動画を見る 

【数Ⅰ】高2生必見!!2020年度 第2回 K塾高2模試 大問2-2_図形と計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCにおいて、$AB=7、BC=8、CA=3$とする。
(1)$\cos\angle BAC$の値を求めよ。
(2)三角形ABCの面積を求めよ。
(3)三角形ABCの外接円において、点Aを含まない方の弧BC上に、$ \sin\angle BCP:\sin\angle CBP=1:3$となるように点Pをとる。
このとき、線分BPの長さと四角形 ABPCの面積を求めよ。
この動画を見る 

長崎大(医) 三角関数 方程式解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq x \leqq \pi$のとき、方程式$\cos 2x+4a \sin x +a-2=0$が異なる2つの解をもつための$a$の範囲

出典:1988年長崎大学医学部 過去問
この動画を見る 
PAGE TOP