佐賀大(医)3次方程式の解の公式 - 質問解決D.B.(データベース)

佐賀大(医)3次方程式の解の公式

問題文全文(内容文):
$\alpha,\beta$は正の実数である.

(1)$p,q$正, $\alpha-\beta=q$,$\alpha\beta=\left(\dfrac{p}{3}\right)^3$
$\sqrt[3]{\alpha}-\sqrt[3]{\beta}$は$x^3+px-q=0$の解であることを示せ.

(2)$x^3+6x-2=0$の実数解を求めよ.

2020佐賀大(医)過去問
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha,\beta$は正の実数である.

(1)$p,q$正, $\alpha-\beta=q$,$\alpha\beta=\left(\dfrac{p}{3}\right)^3$
$\sqrt[3]{\alpha}-\sqrt[3]{\beta}$は$x^3+px-q=0$の解であることを示せ.

(2)$x^3+6x-2=0$の実数解を求めよ.

2020佐賀大(医)過去問
投稿日:2021.06.01

<関連動画>

複素数とは?名古屋工業大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\sqrt3+i)^m=(1+i)^n$,最小の自然数$m,n$を求めよ.

1967名古屋工大過去問

この動画を見る 

福田の1日1題わかった数学〜高校2年生第3回〜高次方程式と連立方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
$\left\{\begin{array}{1}
a^3x+a^2y+az=1\\
b^3x+b^2y+bz=1\\
c^3x+c^2y+cz=1\\
\end{array}\right.$
を解け。

ただし、$a,b,c$は異なる数で$0$でない。
この動画を見る 

2022早稲田大(社)整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整式P(x)をx-1で割ると1あまり,$ (x+1)^2 $で割ると3x+2あまる.
P(x)を次の式で割ったあまりは?
(1)$ x+1$ (2)$(x+1)(x-1)$ (3)$(x-1)(x+1)^2$

2022早稲田大過去問
この動画を見る 

福田のおもしろ数学547〜複素数の偏角

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

複素数

$(1-\cos 20°-i \sin 20°)^{10}$

の偏角を$0°~360°$の範囲で求めよ。
    
この動画を見る 

素数を探せ!10101‥101

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数を全て求めよ.
$101,10101,1010101,101010・・・・・・101$
この動画を見る 
PAGE TOP