問題文全文(内容文):
$k,l,m,n$は負でない整数
0でない全ての$x$に対して等式$\displaystyle \frac{(x+1)^k}{x^l}-1=\displaystyle \frac{(x+1)^m}{x^n}$が成り立つ$(k,l,m.n)$
出典:東京大学 過去問
$k,l,m,n$は負でない整数
0でない全ての$x$に対して等式$\displaystyle \frac{(x+1)^k}{x^l}-1=\displaystyle \frac{(x+1)^m}{x^n}$が成り立つ$(k,l,m.n)$
出典:東京大学 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$k,l,m,n$は負でない整数
0でない全ての$x$に対して等式$\displaystyle \frac{(x+1)^k}{x^l}-1=\displaystyle \frac{(x+1)^m}{x^n}$が成り立つ$(k,l,m.n)$
出典:東京大学 過去問
$k,l,m,n$は負でない整数
0でない全ての$x$に対して等式$\displaystyle \frac{(x+1)^k}{x^l}-1=\displaystyle \frac{(x+1)^m}{x^n}$が成り立つ$(k,l,m.n)$
出典:東京大学 過去問
投稿日:2019.07.14