息抜き 整数問題 - 質問解決D.B.(データベース)

息抜き 整数問題

問題文全文(内容文):
$2020^{2020}$を$2019^2$で割った余りを求めよ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2020^{2020}$を$2019^2$で割った余りを求めよ
投稿日:2019.10.01

<関連動画>

華麗な別解

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+n+1$は$9$の倍数でないことを示せ.
この動画を見る 

整数の基本問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,nを自然数とし$(m \gt n)$,pを素数とする.
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{1}{p}$のとき,
mは偶数であることを示せ.
この動画を見る 

自然数の和  日大習志野

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1からnまでの自然数の和=210
n=?(n:自然数)

日本大学習志野高等学校
この動画を見る 

早稲田(政経)格子点 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
96年 早稲田大学政治経済学部過去問
x-y平面に、互いに異なる 5個の格子点を選ぶ と、その中に次の性質を もつ格子点が少なくと も一対は存在することを示せ

※一対の格子点を結ぶ 線分の中点が格子点
この動画を見る 

東工大 整数問題 合同式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=19^n+(-1)^{n-1}2^{4n-3}$のすべてを割り切る素数を求めよ。
$(n$自然数$)$

出典:1986年東京工業大学 過去問
この動画を見る 
PAGE TOP