2021灘高 不思議な誘導付き整数問題 - 質問解決D.B.(データベース)

2021灘高 不思議な誘導付き整数問題

問題文全文(内容文):
$ab^2+(3a+4)b+2a+6=0・・・①$を満たす.

(1)$P=2ab+3a+4$とする.$P^2$を$a$のみを用いて表せ.
(2)①を満たす整数$a,b$を求めよ.$a \neq 0,b \neq 0$

2021灘高過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ab^2+(3a+4)b+2a+6=0・・・①$を満たす.

(1)$P=2ab+3a+4$とする.$P^2$を$a$のみを用いて表せ.
(2)①を満たす整数$a,b$を求めよ.$a \neq 0,b \neq 0$

2021灘高過去問
投稿日:2021.02.17

<関連動画>

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数(m,n)をすべて求めよ.
$3・2^n+1=m^2$
この動画を見る 

息抜き整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n!+8=2^k$
自然数$(n,k)$をすべて求めよ.
この動画を見る 

【整数の性質】見終わったら整数の性質が得意になる動画【前編】(数学A)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
最大公約数が15で、最小公倍数が390えある。
2つの自然数をすべて求めよ

(2)
等式$5m+2n=25$を満たす自然数の組をすべて求めよ

(3)
$(m-4)n=12$を満たす自然数の組$(m.n)$をすべて求めよ。
この動画を見る 

パスラボ宇佐見さん登場 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7^n=k^2-99$
整数$k,n$を全て求めよ.
この動画を見る 

奇数が分母の数列の和に突如あれが登場

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\Box$を求めよ.
$\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}+・・・・・・=\dfrac{\Box}{4}$
この動画を見る 
PAGE TOP