明治大 3倍角の公式と3次方程式 - 質問解決D.B.(データベース)

明治大 3倍角の公式と3次方程式

問題文全文(内容文):
$3$倍角の公式を利用して$x^3-3x-1=0$の$3$つの解を$cos$を用いて答えよ.

2020明治大過去問
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3$倍角の公式を利用して$x^3-3x-1=0$の$3$つの解を$cos$を用いて答えよ.

2020明治大過去問
投稿日:2021.02.17

<関連動画>

同志社 整式が割り切れる条件 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
同志社大学過去問題
整式$x^{2n}+(x+1)^{2n}+1$が$x^2+x+1$で割り切れる自然数nの条件
この動画を見る 

4次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(x^2+6x+1)(x^2+5x)=2(x+1)^2$
この動画を見る 

福田の数学〜中央大学2021年理工学部第3問〜剰余類による分類

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$自然数$a$を3で割った余りを$r(r=0,1,2)$とする.以下の問いに答えよ.
(1)以下を求めよ.
(ア)$r=0$のとき,$a^3+4$を3で割った余り
(イ)$r=1$のとき,$a^3+4$を3で割った余り
(ウ)$r=2$のとき,$a^3+4$を3で割った余り

(2)3つの自然数$a,a^3+4,a^5+8$のうちいずれか1つは3の倍数であることを示せ.

(3)3つの自然数$a,a^3+4,a^5+8$が同時に素数となる$a$をすべて求めよ.

2021中央大理工学部過去問
この動画を見る 

大阪教育大 複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=1+\sqrt{ 3 }i,\beta=1-\sqrt{ 3 }i$

(1)
$\displaystyle \frac{1}{\alpha^2}+\displaystyle \frac{1}{\beta^2}$の値を求めよ

(2)
$\displaystyle \frac{\beta^8}{\alpha^7}$の値を求めよ

(3)
$z^4=-8\beta$を満たす$z$を求めよ

出典:1999年大阪教育大学 過去問
この動画を見る 

京都大 複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+i)^n+(1-i)^n \gt 10^{10}$をみたす最小の自然数$n$を求めよ.
$0.3 \lt \log_{10}2 \lt 0.302$

京大過去問
この動画を見る 
PAGE TOP