東工大 末尾の0の個数問題 - 質問解決D.B.(データベース)

東工大 末尾の0の個数問題

問題文全文(内容文):
$n$は自然数である.
$f(n)$を$n!$の末尾に並ぶ$0$の個数とする.
(例)$f(10)=2,f(100)=24$

$\displaystyle \lim_{n\to\infty}\dfrac{f(10^n)}{10^n}$を求めよ.

1991東工大過去問
単元: #関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$f(n)$を$n!$の末尾に並ぶ$0$の個数とする.
(例)$f(10)=2,f(100)=24$

$\displaystyle \lim_{n\to\infty}\dfrac{f(10^n)}{10^n}$を求めよ.

1991東工大過去問
投稿日:2020.06.30

<関連動画>

数学「大学入試良問集」【17−3② 解けない漸化式とはさみうちの原理】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1}=\displaystyle \frac{4a_n^2+9}{8a_n}(n=1,2,3,・・・)$で定義される数列$\{a_n\}$について以下の問いに答えよ。
(1)$a_n \gt \displaystyle \frac{3}{2}(n=1,2,3,・・・)$を証明せよ。
(2)$a_{n+1}-\displaystyle \frac{3}{2} \lt \displaystyle \frac{1}{3}\left[ a_n-\dfrac{ 3 }{ 2 } \right]^2(n=1,2,3,・・・)$を証明せよ。
(3)$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
この動画を見る 

【高校数学】分数関数と一次関数の不等式をグラフを使わない裏ワザ!

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を解け。
$\displaystyle\frac{3x-4}{2x-3} < x$
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(4)〜無限級数の和と部分分数分解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (4)次の無限級数の和は自然数となる。その自然数を求めよ。\\
\sum_{n=6}^{\infty}\frac{1800}{(n-5)(n-4)(n-1)n}\hspace{50pt}
\end{eqnarray}

2022早稲田大学教育学部過去問
この動画を見る 

弘前大(医)3次方程式 極限 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#弘前大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
n自然数
$x^3+3nx^2-(3n+2)=0$
(1)全ての自然数nについて正の解をただ1つしかもたないことを示せ。
(2)各自然数nに対して正の解を$a_n$とする。
 $\displaystyle\lim_{n \to \infty}a_n$を求めよ。
この動画を見る 

数学「大学入試良問集」【17−2 Sn入り漸化式と極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$\{a_n\}$について、$S_n=\displaystyle \sum_{k=1}^n a_k$ $n=1,2,3,・・・,S_0=0$とおく。
$a_n=S_{n-1}+n・2^n$ $n=1,2,3,・・・$ が成り立つとき、次の各問いに答えよ。
(1)$S_n$を$n$の式で表せ。
(2)極限値$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\displaystyle \frac{2^k}{a_k}$を求めよ。
この動画を見る 
PAGE TOP