問題文全文(内容文):
何進法でるか求めよ.
$x^3-21x^2+52x-32=0$が3つの整数解をもつ.
有理数解は$\dfrac{a_0の約数}{a_nの約数}$,$a_n=1$なら有理数解は$a_0$の約数の整数のみ
$a_n x^n+a_{n-1}x^{x-1}+・・・・・・+a_1 x+a_0=0$
何進法でるか求めよ.
$x^3-21x^2+52x-32=0$が3つの整数解をもつ.
有理数解は$\dfrac{a_0の約数}{a_nの約数}$,$a_n=1$なら有理数解は$a_0$の約数の整数のみ
$a_n x^n+a_{n-1}x^{x-1}+・・・・・・+a_1 x+a_0=0$
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
何進法でるか求めよ.
$x^3-21x^2+52x-32=0$が3つの整数解をもつ.
有理数解は$\dfrac{a_0の約数}{a_nの約数}$,$a_n=1$なら有理数解は$a_0$の約数の整数のみ
$a_n x^n+a_{n-1}x^{x-1}+・・・・・・+a_1 x+a_0=0$
何進法でるか求めよ.
$x^3-21x^2+52x-32=0$が3つの整数解をもつ.
有理数解は$\dfrac{a_0の約数}{a_nの約数}$,$a_n=1$なら有理数解は$a_0$の約数の整数のみ
$a_n x^n+a_{n-1}x^{x-1}+・・・・・・+a_1 x+a_0=0$
投稿日:2020.06.27