金沢大 漸化式 - 質問解決D.B.(データベース)

金沢大 漸化式

問題文全文(内容文):
$a_1=-4,a_{n+1}=2a_n+2^{n+3}n-13・2^{n+1}$である.
一般項を求め,$a_n$を最小にする$n$の値を求めよ.

2003金沢大過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=-4,a_{n+1}=2a_n+2^{n+3}n-13・2^{n+1}$である.
一般項を求め,$a_n$を最小にする$n$の値を求めよ.

2003金沢大過去問
投稿日:2020.04.06

<関連動画>

【高校数学】等差数列の和の公式~理解したら簡単です~ 3-4【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
等差数列の和の公式 解説動画です
この動画を見る 

大阪大 等比数列 訂正

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
訂正
自然数の列
$a_{1},a_{2},a_{3},a_{4},a_{5}$は等比数列
$S=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$
$S'=a_{1}-a_{2}-a_{3}-a_{4}-a_{5}$
$T=a^2_{1}+a^2_{2}+a^2_{3}+a^2_{4}+a^2_{5}$

(1)
$\displaystyle \frac{T}{S}=S'$を示せ

(2)
$T$が素数のとき、$T$の値は?



出典:大阪大学 過去問
この動画を見る 

【数B】数列:第10項が50、第15項が30の等差数列{an}では、第何項が初めて負となるか。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第10項が50、第15項が30の等差数列{an}では、第何項が初めて負となるか。
この動画を見る 

【高校数学】階差数列の一般項~どこよりも丁寧に~ 3-9【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(3)〜漸化式で与えられた数列の項の値

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (3)aを実数とする。数列\left\{a_n\right\}が次の条件を満たしている。\\
(\textrm{i})a_1=a\hspace{180pt}\\
(\textrm{ii})a_{n+1}=a_n^2-2a_n-3\ \ \ \ \ \ (n=1,2,3,\ldots)\hspace{37pt}\\
このとき、すべての正の整数nに対して、a_n \leqq 10となるような\\
aの最小値は\boxed{\ \ ウ\ \ }である。\hspace{140pt}
\end{eqnarray}

2022早稲田大学商学部過去問
この動画を見る 
PAGE TOP