【短時間でポイントチェック!!】ベクトルの内積〔現役講師解説、数学〕 - 質問解決D.B.(データベース)

【短時間でポイントチェック!!】ベクトルの内積〔現役講師解説、数学〕

問題文全文(内容文):
$|\vec{ a }|=2,|\vec{ b }|=3,\vec{ a }\vec{ b }=-3$のとき$P=|\vec{ a }+t\vec{ b }|$を最小にする実数$t$の値とそのときの最小値は?
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
$|\vec{ a }|=2,|\vec{ b }|=3,\vec{ a }\vec{ b }=-3$のとき$P=|\vec{ a }+t\vec{ b }|$を最小にする実数$t$の値とそのときの最小値は?
投稿日:2024.05.28

<関連動画>

【数学】中高一貫校用問題集:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$(それぞれの位置ベクトルを$a、b、c$とする)。
この時、次の問いに答えよ。
(1)点$A$から辺$BC$に下した垂線のベクトル方程式を求めよ。
※(2)は②の動画で説明
この動画を見る 

【数学B/平面ベクトル】ベクトルの大きさの最小値を求める

アイキャッチ画像
単元: #平面上のベクトル#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\vec{ a }=(3,-2),\vec{ b }=(1,-2)$のとき、$|\vec{ a }+t\vec{ b }|$の最小値とそのときの実数$t$の値を求めよ。
この動画を見る 

【わかりやすく】ベクトルの成分表示と大きさ(数学B/平面ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
図のベクトル$\vec{ a },\vec{ b },\vec{ c },\vec{ d },\vec{ e }$を成分で表し、それぞれの大きさを求めよ
この動画を見る 

福田の数学〜共通テスト対策にもバッチリ〜杏林大学2023年医学部第2問後編〜平面と直線の交点の位置ベクトルと体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。

2023杏林大学過去問
この動画を見る 

福田の数学〜大阪大学2022年文系第1問〜交点の位置ベクトルと線分の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 三角形ABCにおいて、辺ABを2:1に内分する点をM、辺ACを1:2に内分する点をNとする。\\
また、線分BNと線分CMの交点をPとする。\\
(1)\overrightarrow{ AP }を、\overrightarrow{ AB }と\overrightarrow{ AC }を用いて表せ。\\
(2)辺BC,CA,CBの長さをそれぞれa,b,cとするとき、線分APの長さを、a,b,cを用いて表せ。
\end{eqnarray}

2022大阪大学文系過去問
この動画を見る 
PAGE TOP