【数Ⅲ】微分法:指数対数の微分、演習 - 質問解決D.B.(データベース)

【数Ⅲ】微分法:指数対数の微分、演習

問題文全文(内容文):
次の関数を微分しよう
(1)$y=\log(x^2+1)$  (2)$y=\log_2\vert 2x\vert $
(3)$y=\log\vert \tan x\vert $ (4)$y=\log\vert \sin x\vert$
(5)$y=e^(2x)$    (6)$y=2^(-3x)$
(7)$y=e^x \sin x$ (8)$y=\log\dfrac{x}{x}$
(9)$y=(\log x)^3$   (10)$y=\log_2\vert \cos x\vert $
(11)$y=\log(\log x)$ (12)$y=a-(-2x+1)$
(13)$y=2^{\sin x}$   (14)$y=\log_3\dfrac{x}{3^x}$
チャプター:

0:00 オープニング
0:05 問題文
0:15 問題解説(1)
0:33 問題解説(2)
1:16 問題解説(3)
1:41 問題解説(4)
2:00 問題解説(5)
2:17 問題解説(6)
2:37 問題解説(7)
2:59 問題解説(8)
3:22 問題解説(9)
3:39 問題解説(10)
4:08 問題解説(11)
4:26 問題解説(12)
5:14 問題解説(13)
5:30 問題解説(14)
6:39 指数対数の微分公式
7:01 名言

単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数を微分しよう
(1)$y=\log(x^2+1)$  (2)$y=\log_2\vert 2x\vert $
(3)$y=\log\vert \tan x\vert $ (4)$y=\log\vert \sin x\vert$
(5)$y=e^(2x)$    (6)$y=2^(-3x)$
(7)$y=e^x \sin x$ (8)$y=\log\dfrac{x}{x}$
(9)$y=(\log x)^3$   (10)$y=\log_2\vert \cos x\vert $
(11)$y=\log(\log x)$ (12)$y=a-(-2x+1)$
(13)$y=2^{\sin x}$   (14)$y=\log_3\dfrac{x}{3^x}$
投稿日:2021.08.27

<関連動画>

福田のおもしろ数学169〜log x/xの極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\lim_{x \to \infty}\frac{\log x}{x}$=0 を証明せよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第1問〜直線群と通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $t$を実数とし、座標平面上の直線$l:(2t^2-4t+2)x$$-(t^2+2)y+4t+2=0$
を考える。

(1)直線$l$は$t$の値によらず、定点を通る。その定点の座標は$\boxed{\ \ ア\ \ }$である。

(2)直線$l$の傾きを$f(t)$とする。$f(t)$の値が最小となるのは$t=\boxed{\ \ イ\ \ }$
のときであり、最大となるのは$t=\boxed{\ \ ウ\ \ }$のときである。また、
$a$を実数とするとき、$t$に関する方程式$f(t)=a$がちょうど1個の
実数解をもつような$a$の値を全て求めると、$a=\boxed{\ \ エ\ \ }$である。

(3)$t$が実数全体を動くとき、直線$l$が通過する領域を$S$とする。また$k$を
実数とする。放物線$y=\displaystyle \frac{1}{2}(x-k)^2+\displaystyle \frac{1}{2}(k-1)^2$が領域$S$と共有点
を持つような$k$の値の範囲は$\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 

【数Ⅲ-130】速度と加速度③(円運動編)

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と加速度③・円運動編)

$o$が原点の座標平面上の動点$P$の時刻$t$における位置が$x=3\cos2t$、$y=3\sin2t$で表されるとき、次の問いに答えよ。

①速度$\vec{v},$加速度$\vec{a}$を求めよ。

②$\overrightarrow{OP} \perp \vec{v},\vec{v}\perp \vec{a}$を示せ。
この動画を見る 

阪大の証明問題!ぜひとも取りたい問題【数学 入試問題】【大阪大学 文系】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形$ABC$において,辺$AB$の長さを$c$,辺$CA$の長さを$b$で表す。

$\angle ACB=3\angle ABC$であるとき,$c<3b$を示せ。

大阪大過去問
この動画を見る 

高専数学 微積II #2(3)(4) 2次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x=0$における2次近似式を求め等式で表せ.
(1)$\cos 2x$
(2)$\log (1+2x)$
この動画を見る 
PAGE TOP