福田の数学〜九州大学2023年理系第1問〜複素数平面上の三角形の形状 - 質問解決D.B.(データベース)

福田の数学〜九州大学2023年理系第1問〜複素数平面上の三角形の形状

問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)4次方程式$x^4$-2$x^3$+3$x^2$-2$x$+1=0 を解け。
(2)複素数平面上の$\triangle$ABCの頂点を表す複素数をそれぞれ$\alpha$, $\beta$, $\gamma$とする。
$(\alpha-\beta)^4$+$(\beta-\gamma)^4$+$(\gamma-\alpha)^4=0$
が成り立つとき、$\triangle$ABCはどのような三角形になるか答えよ。

2023九州大学理系過去問
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)4次方程式$x^4$-2$x^3$+3$x^2$-2$x$+1=0 を解け。
(2)複素数平面上の$\triangle$ABCの頂点を表す複素数をそれぞれ$\alpha$, $\beta$, $\gamma$とする。
$(\alpha-\beta)^4$+$(\beta-\gamma)^4$+$(\gamma-\alpha)^4=0$
が成り立つとき、$\triangle$ABCはどのような三角形になるか答えよ。

2023九州大学理系過去問
投稿日:2023.06.07

<関連動画>

福田の数学〜上智大学2024TEAP利用型理系第1問(2)〜複素数の極形式とド・モアブルの定理

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$
\begin{eqnarray}
\fcolorbox{#000}{ #fff }{1}(2)\
複素数(\sqrt{2}+\sqrt{6}i)^{2024}を極形式で表したときの絶対値をr、偏角をθとする。ただし、0\leqqθ<2π\
このとき、\dfrac{log_2r}{2024}=\fcolorbox{#000}{ #fff }{$あ \ \ \ $}、θ=\fcolorbox{#000}{ #fff }{$い \ \ \ $}πである。
\end{eqnarray}
$
この動画を見る 

福田の数学〜東京慈恵会医科大学2025医学部第4問〜複素数の絶対値の取りうる値の範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$z$は実数ではない複素数で、

$z+\dfrac{1}{z-1}$が正の実数となるものとする。

このとき、

$ \left \vert \dfrac{1}{z-1}-\dfrac{z- \overline{z}}{2}+1 \right \vert $がとりうる値の

範囲を求めよ。

ただし、$\overline{z}$は$z$に共役な複素数とする。

$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る 

横浜市大 複素数 cos36°,cos108° 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜市立大学過去問題
(1)$x^2-x-1=0$解け
(2)複素数Z$(\neq 0)$,$\quad x=Z+\frac{1}{Z}$として、このxを(1)の方程式に代入して、すべての解を求めよ。
(3)$cos\frac{\pi}{5}$と$cos\frac{3\pi}{5}$の値
この動画を見る 

【高校数学】数Ⅲ-15 円と分点①

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2つの複素数$\alpha=2+4i, \beta = 7 -i$を表す複素数平面上の点を
それぞれ$A,B$とする.
線分$AB$について,次の点を表す複素数を求めよう.

①$3:2$に内分する点

②$2:3$に外分する点

③中点
この動画を見る 

群馬大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
群馬大学過去問題
$Z=\frac{\sqrt3-1}{2}+\frac{\sqrt3+1}{2}i$
(1)$\frac{Z}{1+i}$をa+biの形で(a,b実数)
(2)Zを極形式で表せ
(3)$Z^{12}$を計算せよ
この動画を見る 
PAGE TOP