【数Ⅱ】式と証明:分数式の基本 - 質問解決D.B.(データベース)

【数Ⅱ】式と証明:分数式の基本

問題文全文(内容文):
次の計算をしよう。
$\dfrac{x^2-y^2}{x^2-(y-z)^2}\times\dfrac{(x-y)^2-z^2}{x^2-xy}\div \dfrac{x^2+2xy+y^2}{x^2+xy-xz}$
チャプター:

0:00 オープニング
0:05 問題文
0:13 まずは因数分解
1:20 約分せよ
1:49 名言

単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の計算をしよう。
$\dfrac{x^2-y^2}{x^2-(y-z)^2}\times\dfrac{(x-y)^2-z^2}{x^2-xy}\div \dfrac{x^2+2xy+y^2}{x^2+xy-xz}$
投稿日:2021.09.03

<関連動画>

大学入試問題#158 名古屋市立大学(2020) 2項展開の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: ますただ
問題文全文(内容文):
$(x+2y)^2(x+2y+3z)^4$を展開した時
$x^4y^2,x^3y^2z$の係数をそれぞれ求めよ。

出典:2020年名古屋市立大学 入試問題
この動画を見る 

【高校数学】 数Ⅱ-21 不等式の証明③

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$a \gt 0 , b \gt 0 $のとき、次の不等式を証明しよう。また、等号が成り立つ場合を調べよう。

①$3a+\displaystyle \frac{5}{a} \geqq 2\sqrt{ 15 }$

②$(a+2b)(\displaystyle \frac{2}{a}+\displaystyle \frac{1}{b}) \geqq 8$
この動画を見る 

慶應商 式の証明 高校数学 Mathematics Japanese university entrance exam Keio University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は正の整数
$\sqrt{ 3 }$は$\displaystyle \frac{a}{b}$と$\displaystyle \frac{a+3b}{a+b}$の間にあることを示せ

出典:慶應商学部 問題
この動画を見る 

福田のおもしろ数学561〜三角形の3つの内角を度数法で表したときの論証その2

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

三角形の$3$つの内角を度数表で測ったものを

$x,y,z$とする。次を証明して下さい。

$\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}$のうち、

ちょうど$1$つだけ有理数

$\Rightarrow x,y,z$はすべて無理数
    
この動画を見る 

数学を数楽に

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: 数学を数楽に
問題文全文(内容文):
「$x>3$」の否定は「$x<3$」
この動画を見る 
PAGE TOP