福田の数学〜筑波大学2023年理系第6問〜複素数平面上の点の軌跡とアポロニウスの円 - 質問解決D.B.(データベース)

福田の数学〜筑波大学2023年理系第6問〜複素数平面上の点の軌跡とアポロニウスの円

問題文全文(内容文):
$\Large\boxed{6}$ $i$を虚数単位とする。複素数平面に関する以下の問いに答えよ。
(1)等式|$z$+2|=2|$z$-1| を満たす点$z$の全体が表す図形は円であることを示し、その中心と半径を求めよ。
(2)等式
$\left\{|z+2|-2|z-1|\right\}$$|z+6i|$=$3\left\{|z+2|-2|z-1|\right\}$$|z-2i|$
を満たす点$z$の全体が表す図形をSとする。このときSを複素数平面上に図示せよ。
(3)点$z$が(2)における図形S上を動くとき、$w$=$\frac{1}{z}$ で定義される点$w$が描く図形を複素数平面上に図示せよ。

2023筑波大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ $i$を虚数単位とする。複素数平面に関する以下の問いに答えよ。
(1)等式|$z$+2|=2|$z$-1| を満たす点$z$の全体が表す図形は円であることを示し、その中心と半径を求めよ。
(2)等式
$\left\{|z+2|-2|z-1|\right\}$$|z+6i|$=$3\left\{|z+2|-2|z-1|\right\}$$|z-2i|$
を満たす点$z$の全体が表す図形をSとする。このときSを複素数平面上に図示せよ。
(3)点$z$が(2)における図形S上を動くとき、$w$=$\frac{1}{z}$ で定義される点$w$が描く図形を複素数平面上に図示せよ。

2023筑波大学理系過去問
投稿日:2023.07.03

<関連動画>

福田の数学〜東京工業大学2022年理系第4問〜複素数平面上の点の軌跡と線分の通過範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とする。複素数$z$が$|z-1|=a$かつ$z\neq \frac{1}{2}$を満たしながら
動くとき、複素数平面上の点$w=\frac{z-3}{1-2z}$が描く図形をKとする。
このとき、次の問いに答えよ。
(1)Kが円となるためのaの条件を求めよ。また、そのとき
Kの中心が表す複素数とKの半径を、それぞれaを用いて表せ。
(2)aが(1)の条件を満たしながら動くとき、虚軸に平行で円Kの直径となる
線分が通過する領域を複素数平面上に図示せよ。

2022東京工業大学理系過去問
この動画を見る 

15東京都教員採用試験(数学:1-3 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(3)
$α、β \in \mathbb{ C }$
$α^2+αβ+β^2=0$ (α,β≠0)
$arg \frac{α}{β}$
この動画を見る 

福田の数学〜立教大学2022年理学部第4問〜複素数平面上の点列と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師:
問題文全文(内容文):
複素数$\alpha=\frac{\sqrt3\ i}{1+\sqrt3\ i}$に対して、複素数$z_n$を
$z_n=8\alpha^{n-1}\ \ \ \ (n=1,\ 2,\ 3,\ ...)$
によって定める。ただしiは虚数単位とする。複素数平面において、原点をOとし、
$z_n$の表す点を$P_n$とする。このとき、以下の問いに答えよ。
(1)$\alpha$の絶対値|$\alpha$と変革$\arg\alpha$をそれぞれ求めよ。
ただし、$0 \leqq \arg\alpha \lt 2\pi$とする。
(2)$z_2,\ z_3$の実部と虚部をそれぞれ求めよ。
(3)$z_n$の極形式をnを用いて表せ。
(4)$O,\ P_n,\ P_{n+1}$を頂点とする三角形の面積$S_n$を$n$を用いて表せ。
(5)(4)で定めた$S_n$に対して、無限級数$\sum_{n=1}^{\infty}S_n$の和Sを求めよ。

2022立教大学理工学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題029〜九州大学2016年度理系第5問〜ドモアブルの定理と三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#三角関数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)$\theta$を$0 \leqq \theta \lt 2\pi$を満たす実数、iを虚数単位とし、$z=\cos\theta+i\sin\theta$で
表される複素数とする。このとき、整数nに対して次の式を証明せよ。
$\cos n\theta=\frac{1}{2}\left(z^n+\frac{1}{z^n}\right), \sin n\theta=-\frac{i}{2}\left(z^n-\frac{1}{z^n}\right)$

(2)次の方程式を満たす実数$x(0 \leqq x \lt 2\pi)$を求めよ。
$\cos x+\cos2x-\cos3x=1$

(3)次の式を証明せよ。
$\sin^220°+\sin^240°+\sin^260°+\sin^280°=\frac{9}{4}$

2016九州大学理系過去問
この動画を見る 

福田の数学〜上智大学2024理工学部第1問(1)〜複素数の絶対値と三角関数の計算

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数 $z=(-3+2 \cos\theta )+(4+2 \sin \theta)i$ の絶対値は、$\theta = \theta_1$ のとき最小値 $\fbox{ア}$ をとる。このとき、 $\sin{\theta_1} = \frac{\fbox{イ}}{\fbox{ウ}}$ である。
この動画を見る 
PAGE TOP