【数B】ベクトル:平行四辺形状のマス目上にあるベクトルを表そう! - 質問解決D.B.(データベース)

【数B】ベクトル:平行四辺形状のマス目上にあるベクトルを表そう!

問題文全文(内容文):
Adプラ数学B問題606
次に図示された2つのベクトル$\overrightarrow{p},\overrightarrow{q}$を$\overrightarrow{a},\overrightarrow{b}$で表せ。
チャプター:

0:00問題文
0:09 vec(p)の解説
1:14 vec(q)の解説

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
Adプラ数学B問題606
次に図示された2つのベクトル$\overrightarrow{p},\overrightarrow{q}$を$\overrightarrow{a},\overrightarrow{b}$で表せ。
投稿日:2022.09.13

<関連動画>

福田の数学〜早稲田大学2021年社会科学部第2問〜ベクトルの図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ $\triangle OAB$において、辺$OA$を$1:1$に内分する点を$D$、辺$OB$を$2:1$に内分する点を$E$とする。線分$BD$と線分$AE$の交点を$F$、$\overrightarrow{ OA }=\overrightarrow{ a }$, $\overrightarrow{ OB }=\overrightarrow{ b }$,$\ |\overrightarrow{ a }|=a$,$ |\overrightarrow{ b }|=b$
として、次の問いに答えよ。
$(1)\overrightarrow{ OF }$を$\overrightarrow{ a }$ , $\overrightarrow{ b }$を用いて表せ。
さらに、$\overrightarrow{ a }・\overrightarrow{ OF }=\overrightarrow{ b }・\overrightarrow{ OF }$ として、以下の問いに答えよ。
$(2)$内積$\overrightarrow{ a }・\overrightarrow{ b }$を$a$, $b$を用いて表せ。
$(3)b=1$のとき、$a$の取りうる値の範囲を求めよ。
$(4)b=1$のとき、$\triangle OAB$の面積$S$の最大値と、そのときの$a$の値を求めよ。
この動画を見る 

【数B】ベクトル:ベクトルの大きさを自由自在に扱おう!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
アドバンスプラス数学B
問題617
$\vec{a}=(2,-1)$について、
(1)$\vec{a}$と平行な単位ベクトルを求めよ。
(2)$\vec{a}$と同じ向きで、大きさが5である$\vec{b}$を求めよ。
この動画を見る 

【数B】ベクトル:ベクトルの基本⑦内積を求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a=\sqrt3,b=5,a-b=\sqrt5$のとき、内積a・bを求めよ.
この動画を見る 

福田の数学〜慶應義塾大学2025経済学部第5問〜空間における平面と平面の交線

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

座標平面の原点$O$を中心とする半径$1$の

球面を$C$、点$M(4,0,0)$を中心とする

半径$2$の球面上を$D$とする。

(1)$p,q$を実数とする。

$xy$平面上の直線$y=px+q$は、

球面$C$と$xy$平面が交わってできる円と

点$A_1$で接し、球面$D$と$xy$平面が交わって

できる円と点$A_2$で接し、かつ

$0 \lt p 1$を満たすとする。$p$と$q$の値を求めよ。

(2)$r,s$を実数とする。

$zx$平面上の直線$z=rx+s$は、球面$C$と

$zx$平面が交わってできる円と点$B_1$で接し、

球面$D$と$zx$平面が交わってできる円と点$B_2$で

接し、かつ、$r \lt -1$を満たすとする。

$r$と$s$の値を求めよ。

以下、点$E$は$\overrightarrow{ A_1 E }=(0,0,1)$を満たすとし、

$3$点$A_1,A_2,E$を通る平面を$\alpha$とする。

また、点$F$は$\overrightarrow{ B_1 E }=(0,1,0)$を満たすとし、

$3$点$B_1,B_2,F$を通る平面を$\beta$とする。

$\alpha$と$\beta$が交わってできる直線を

$\ell$とし、$\ell$と$xy$平面の交点を

$G,\ell$と$zx$平面の交点を$H$とする。

(3)$G$の座標を求めよ。

(4)$\ell$上の点$T$を、実数$t$を用いて

$\overrightarrow{OT}=\overrightarrow{OG}+t\overrightarrow{OH}$と表す。

$\triangle OMT$の面積が最小となる$t$の値の求めよ。

$2025$年慶應義塾大学経済学部過去問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題030〜東京大学2016年度文系第1問〜鋭角三角形となる条件

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上のベクトル#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の3点$P(x,y), Q(-x,-y), R(1,0)$が鋭角三角形をなすための$(x,y)$
についての条件を求めよ。また、その条件を満たす点P(x,y)の範囲を図示せよ。

2016東京大学文系過去問
この動画を見る 
PAGE TOP