関数と図形 東工大附属(改) B - 質問解決D.B.(データベース)

関数と図形 東工大附属(改) B

問題文全文(内容文):
面積6等分
Cの座標は?
*図は動画内参照

2021東京工業大学附属科学技術高等学校
単元: #数学(中学生)#数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
面積6等分
Cの座標は?
*図は動画内参照

2021東京工業大学附属科学技術高等学校
投稿日:2021.02.17

<関連動画>

ゆる言語学者バーゼル問題に驚く

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
バーゼル問題に関して解説していきます.
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第5問〜散布図と箱ひげ図の関係と相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 以下の図は、ある小学校の15人の女子児童の4年生の4月に計測した身長を横軸に、5年生の4月に計測した身長を縦軸にとった散布図である。(※動画参照)
と表すことができる。よってS(a)を最小にするaはa=$\boxed{\ \ ミ\ \ }$である。
S(a)の最小値は、女子児童の4年生のときと6年生のときの身長の相関係数rと$s_y^2$を用いて$\boxed{\ \ ム\ \ }$と表せる。
また、左の散布図で示した女子児童の計測値を計算すると
$s_x^2$=29.00, $s_y^2$=42.65, $s_{xy}$=31.69
であった。これらを用いてS(a)を最小にするaを計算し、小数第4位を四捨五入すると$\boxed{\ \ メ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

【数Ⅰ】複2次式の因数分解【知らないとできない! 知識問題】

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)x^4+3x^2-4を因数分解せよ.$
$ (2)x^4+5x^2+9を因数分解せよ.$
この動画を見る 

中学生も解ける??因数分解 福島大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^4+x^2+1+2xy-y^2$

福島大学
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第4問〜折り紙を折ってできる線分、角、面積を求める

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 一辺の長さが2の正方形の折り紙 ABCD を次の手順にしたがって折る。\\
(1) A と B、DとCを合わせて ADがBCに重なるように谷折りし、折り目をつけて\\
開く。AB および DC 上にあるこの谷折り線の端点をそれぞれEおよびFとする。\\
(2 ) AF が谷折り線になるよう に谷折りし、折り目をつけて開く。\\
(3) A を谷折り線の端点の1つとして、AB がAF 上に重なるように谷折りし、折り\\
目をつけて開く。BC上にあるこの谷折り線のもう1つの端点をGとする。\\
(4) D と A、CとBを合わせてDCがABに重なるように谷折りして、折り目をつけ\\
る。AD およびBC 上にあるこの谷折り線の端点をそれぞれHおよびIとする。\\
(5) C と B がいずれもGと重なるように2枚重ねて谷折りし、CIおよびBI 上に折り\\
目をつけて開く。この折り目の点をそれぞれ」およびKとする (A, E, B, K は\\
それぞれ D, F, C, J と重なっているため図中には表示していない)\\
(6) HI を谷折り線とする谷折りを開く (A, E, B, KはそれぞれD, F, C, J と重なって\\
いるため図中には表示していない)\\
(7) K を谷折り線の端点の1つとして、JがAB上に重なるように谷折りし、折り目\\
をつける。AD上にあるこの谷折り線のもう1つの端点をしとし、AB上にある\\
Jが重なる点をMとする。\\
(8)KLを谷折り戦とする谷折りを開く(MはJと重なっているため表示していない)\\
(9)Mを谷折り線の端点の1つとして、AとDがそれぞれBEとCF上にくるように\\
谷折りし、折り目をつけて開く。DC上にあるこの谷折り線のもう1つ端点を\\
Nとする。\\
(10)折るのをやめる。\\
\\
このとき、BG=\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }},JK=\boxed{\ \ オカ\ \ }+\sqrt{\boxed{\ \ キク\ \ }},JM=\boxed{\ \ ケコ\ \ },\\
\\
\cos\angle JKM=\frac{\boxed{\ \ サシ\ \ }+\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }}\\
\\
ここで、\triangle JKMの面積をS_1,\triangle JMNの面積をS_2とすると\\
\\
\frac{S_2}{S_1}=\frac{\boxed{\ \ テト\ \ }+\sqrt{\boxed{\ \ ナニ\ \ }}}{\boxed{\ \ ヌネ\ \ }}\\
\\
となる。\\
※(1)~(10)の画像は動画参照
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 
PAGE TOP