ガウス記号 B 2021 明治学院【改】 - 質問解決D.B.(データベース)

ガウス記号 B 2021 明治学院【改】

問題文全文(内容文):
実数aに対してaを超えない最大の整数を[a]で表す。
[$\sqrt n$]=2となる整数nはいくつ?

2021明治学院高等学校
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
実数aに対してaを超えない最大の整数を[a]で表す。
[$\sqrt n$]=2となる整数nはいくつ?

2021明治学院高等学校
投稿日:2021.02.10

<関連動画>

慶應義塾大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$自然数
$x^2+5y^2=2016$

出典:慶應義塾 過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(5)〜約数の個数が6個の自然数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (5)自然数nは1とn以外にちょうど4個の約数をもつとする。このような
自然数nの中で、最小の数は$\boxed{\ \ ク\ \ }$であり、最小の奇数は$\boxed{\ \ ケ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

4次式の整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
n自然数
$n^4-4n^3+22n^2-36n+18=N^2$
が平方数となるnをすべて求めよ
この動画を見る 

【良問】素数を扱え!考え方をきっちり理解したい整数問題です【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$p$が素数ならば,$p^4+14$は素数でないことを示せ。

京都大過去問
この動画を見る 

2024 慶應女子最初の一問 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2+b^2-2a-4b=20$を満たす
自然数(a,b)の組をすべて求めよ

2024慶應義塾女子高等学校
この動画を見る 
PAGE TOP