数と式 式の展開②【化学のタカシーがていねいに解説】 - 質問解決D.B.(データベース)

数と式 式の展開②【化学のタカシーがていねいに解説】

問題文全文(内容文):
展開せよ
$(a+1)^3$  $(x+3y)^3$
$(2a-1)^3$  $(-3a+2b)^3$

展開せよ
$(a+5)(a^2-5a+25)$
$(3-a)(9+3a+a^2)$
$(2x+y)(4x^2-2xy+y^2)$
$(3a-2b)(9a^2+6ab+4b^2)$

計算せよ
$(x-1)(x-3)(x+1)(x+3)$    $(x+2)(x+5)(x-4)(x-1)$
$(a-b)(a+b)(a+b)(a+b)$     $(2x-y)^3(2x+y)^3$
$(a+b)^2(a-b)^2(a+ab+b)^2(a-ab+b)^2$
$(x+2)(x-2)(x^2+2x+4)(x^2-2x+4)$
$(a+b+c)^2+(a+b-c)^2+(b+c-a)^2+(c+a-b)^2$
チャプター:

0:02 展開【解説開始】 
1:22 (a+1)³ ,(x+3y)³  
3:16 (2a-1)³  
5:06  (-3a+2b)³  
8:28 (3-a)(9+3a+a²)  
8:53  (2x+y)(4x²-2xy+y²) ,(3a-2b)(9a²+6ab+4b²)
10:23 (x-1)(x-3)(x+1)(x+3)
14:36  (x+2)(x+5)(x-4)(x-1)
18:54 (a-b)(a+b)(a+b)(a+b)
21:16  (2x-y)³(2x+y)³
27:17 (a+b)²(a-b)²(a+ab+b)²(a-ab+b)²
30:30 (x+2)(x-2)(x²+2x+4)(x²-2x+4)
32:42 (a+b+c)²+(a+b-c)²+(b+c-a)²+(c+a-b)²

単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
展開せよ
$(a+1)^3$  $(x+3y)^3$
$(2a-1)^3$  $(-3a+2b)^3$

展開せよ
$(a+5)(a^2-5a+25)$
$(3-a)(9+3a+a^2)$
$(2x+y)(4x^2-2xy+y^2)$
$(3a-2b)(9a^2+6ab+4b^2)$

計算せよ
$(x-1)(x-3)(x+1)(x+3)$    $(x+2)(x+5)(x-4)(x-1)$
$(a-b)(a+b)(a+b)(a+b)$     $(2x-y)^3(2x+y)^3$
$(a+b)^2(a-b)^2(a+ab+b)^2(a-ab+b)^2$
$(x+2)(x-2)(x^2+2x+4)(x^2-2x+4)$
$(a+b+c)^2+(a+b-c)^2+(b+c-a)^2+(c+a-b)^2$
投稿日:2023.05.09

<関連動画>

図形と計量 有名角以外を含む三角比計算【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の値を求めよ。
(1) $\sin^240°+\sin^250°$
(2) $\tan35°\tan55°+\tan15°\tan75°$
(3) $(\sin70°+\sin20°)^2-2\tan70°\cos^250°$
この動画を見る 

【数Ⅰ】【数と式】根号を含む計算 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \frac{\sqrt{2}}{\sqrt{2}-1}$の整数部分をa、小数部分をbとする。

次の式の値を求めよ。
(1)$a$ (2)$b$ (3)$a+b+b^2$


次の各場合について、$\sqrt{x^2-10x+25}$ をxの多項式で表せ。
(1)x≧5 (2)x<5
この動画を見る 

気付けば一瞬!!おうぎ形

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
この動画を見る 

京都大 式の値域 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2012年 学校法人京都大学

実数$x,y$が$x^2+xy+y^2=6$を満たす
$x^2y+xy^2-x^2-2xy-y^2+x+y$のとりうる値の範囲
この動画を見る 

福島大 基本対称式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
{$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b+c=-4\\ab+bc+ca=7 \\
abc=10
\end{array}
\right.
\end{eqnarray}$

①$a^2+b^2+c^2$
②$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
③$\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}$

2021福島大過去問
この動画を見る 
PAGE TOP